A Review of Magnetic Flux Leakage Nondestructive Testing

Magnetic flux leakage (MFL) testing is a widely used nondestructive testing (NDT) method for the inspection of ferromagnetic materials. This review paper presents the basic principles of MFL testing and summarizes the recent advances in MFL. An analytical expression for the leakage magnetic field ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-10, Vol.15 (20), p.7362
Hauptverfasser: Feng, Bo, Wu, Jianbo, Tu, Hongming, Tang, Jian, Kang, Yihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 7362
container_title Materials
container_volume 15
creator Feng, Bo
Wu, Jianbo
Tu, Hongming
Tang, Jian
Kang, Yihua
description Magnetic flux leakage (MFL) testing is a widely used nondestructive testing (NDT) method for the inspection of ferromagnetic materials. This review paper presents the basic principles of MFL testing and summarizes the recent advances in MFL. An analytical expression for the leakage magnetic field based on the 3D magnetic dipole model is provided. Based on the model, the effects of defect size, defect orientation, and liftoff distance have been analyzed. Other influencing factors, such as magnetization strength, testing speed, surface roughness, and stress, have also been introduced. As the most important steps of MFL, the excitation method (a permanent magnet, DC, AC, pulsed) and sensing methods (Hall element, GMR, TMR, etc.), have been introduced in detail. Finally, the algorithms for the quantification of defects and the applications of MFL have been introduced.
doi_str_mv 10.3390/ma15207362
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9610001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745740830</galeid><sourcerecordid>A745740830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-117f0f621d1fd866313a043886f6a1b3685ce2ffbe1ca5d2d443f98c8c8ad40c3</originalsourceid><addsrcrecordid>eNpdkUtLBDEMxwdRUNa9-AkGvIiw2rSdTuciLIsvWBVEz6XbScfqTKvzWPXb22UXX82hIfnln4QkyQGQE8YKctpoyCjJmaBbyR4UhZhAwfn2L383GXfdM4mPMZC02EvkNL3HpcP3NNj0Rlcee2fSi3r4SOeoX3SF6W3wJXZ9O5jeLTF9iL7z1X6yY3Xd4Xjzj5LHi_OH2dVkfnd5PZvOJ4ZT2k8AckusoFCCLaUQDJgmnEkprNCwYEJmBqm1CwSjs5KWnDNbSBNNl5wYNkrO1rqvw6LB0qDvW12r19Y1uv1UQTv1N-Pdk6rCUhUC4p4QBY42Am14G-LwqnGdwbrWHsPQKZrTIgPBshV6-A99DkPr43orSmYEBNBInaypSteonLch9jXRSmycCR6ti_FpzrOcE8lILDheF5g2dF2L9nt6IGp1OfVzOfYFt6GJ0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728501612</pqid></control><display><type>article</type><title>A Review of Magnetic Flux Leakage Nondestructive Testing</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Feng, Bo ; Wu, Jianbo ; Tu, Hongming ; Tang, Jian ; Kang, Yihua</creator><creatorcontrib>Feng, Bo ; Wu, Jianbo ; Tu, Hongming ; Tang, Jian ; Kang, Yihua</creatorcontrib><description>Magnetic flux leakage (MFL) testing is a widely used nondestructive testing (NDT) method for the inspection of ferromagnetic materials. This review paper presents the basic principles of MFL testing and summarizes the recent advances in MFL. An analytical expression for the leakage magnetic field based on the 3D magnetic dipole model is provided. Based on the model, the effects of defect size, defect orientation, and liftoff distance have been analyzed. Other influencing factors, such as magnetization strength, testing speed, surface roughness, and stress, have also been introduced. As the most important steps of MFL, the excitation method (a permanent magnet, DC, AC, pulsed) and sensing methods (Hall element, GMR, TMR, etc.), have been introduced in detail. Finally, the algorithms for the quantification of defects and the applications of MFL have been introduced.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15207362</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Defects ; Ferromagnetic materials ; Ferromagnetism ; Influence ; Inspection ; Magnetic dipoles ; Magnetic fields ; Magnetic flux ; Magnetic flux leakage testing ; Magnetism ; Magnetization ; Magnets, Permanent ; Nondestructive testing ; Permanent magnets ; Review ; Sensors ; Surface roughness ; Three dimensional models</subject><ispartof>Materials, 2022-10, Vol.15 (20), p.7362</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-117f0f621d1fd866313a043886f6a1b3685ce2ffbe1ca5d2d443f98c8c8ad40c3</citedby><cites>FETCH-LOGICAL-c422t-117f0f621d1fd866313a043886f6a1b3685ce2ffbe1ca5d2d443f98c8c8ad40c3</cites><orcidid>0000-0002-4732-6732 ; 0000-0001-9658-209X ; 0000-0003-2622-4769 ; 0000-0002-1057-3932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610001/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610001/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids></links><search><creatorcontrib>Feng, Bo</creatorcontrib><creatorcontrib>Wu, Jianbo</creatorcontrib><creatorcontrib>Tu, Hongming</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Kang, Yihua</creatorcontrib><title>A Review of Magnetic Flux Leakage Nondestructive Testing</title><title>Materials</title><description>Magnetic flux leakage (MFL) testing is a widely used nondestructive testing (NDT) method for the inspection of ferromagnetic materials. This review paper presents the basic principles of MFL testing and summarizes the recent advances in MFL. An analytical expression for the leakage magnetic field based on the 3D magnetic dipole model is provided. Based on the model, the effects of defect size, defect orientation, and liftoff distance have been analyzed. Other influencing factors, such as magnetization strength, testing speed, surface roughness, and stress, have also been introduced. As the most important steps of MFL, the excitation method (a permanent magnet, DC, AC, pulsed) and sensing methods (Hall element, GMR, TMR, etc.), have been introduced in detail. Finally, the algorithms for the quantification of defects and the applications of MFL have been introduced.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Defects</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetism</subject><subject>Influence</subject><subject>Inspection</subject><subject>Magnetic dipoles</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetic flux leakage testing</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnets, Permanent</subject><subject>Nondestructive testing</subject><subject>Permanent magnets</subject><subject>Review</subject><subject>Sensors</subject><subject>Surface roughness</subject><subject>Three dimensional models</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtLBDEMxwdRUNa9-AkGvIiw2rSdTuciLIsvWBVEz6XbScfqTKvzWPXb22UXX82hIfnln4QkyQGQE8YKctpoyCjJmaBbyR4UhZhAwfn2L383GXfdM4mPMZC02EvkNL3HpcP3NNj0Rlcee2fSi3r4SOeoX3SF6W3wJXZ9O5jeLTF9iL7z1X6yY3Xd4Xjzj5LHi_OH2dVkfnd5PZvOJ4ZT2k8AckusoFCCLaUQDJgmnEkprNCwYEJmBqm1CwSjs5KWnDNbSBNNl5wYNkrO1rqvw6LB0qDvW12r19Y1uv1UQTv1N-Pdk6rCUhUC4p4QBY42Am14G-LwqnGdwbrWHsPQKZrTIgPBshV6-A99DkPr43orSmYEBNBInaypSteonLch9jXRSmycCR6ti_FpzrOcE8lILDheF5g2dF2L9nt6IGp1OfVzOfYFt6GJ0A</recordid><startdate>20221020</startdate><enddate>20221020</enddate><creator>Feng, Bo</creator><creator>Wu, Jianbo</creator><creator>Tu, Hongming</creator><creator>Tang, Jian</creator><creator>Kang, Yihua</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4732-6732</orcidid><orcidid>https://orcid.org/0000-0001-9658-209X</orcidid><orcidid>https://orcid.org/0000-0003-2622-4769</orcidid><orcidid>https://orcid.org/0000-0002-1057-3932</orcidid></search><sort><creationdate>20221020</creationdate><title>A Review of Magnetic Flux Leakage Nondestructive Testing</title><author>Feng, Bo ; Wu, Jianbo ; Tu, Hongming ; Tang, Jian ; Kang, Yihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-117f0f621d1fd866313a043886f6a1b3685ce2ffbe1ca5d2d443f98c8c8ad40c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Defects</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetism</topic><topic>Influence</topic><topic>Inspection</topic><topic>Magnetic dipoles</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetic flux leakage testing</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnets, Permanent</topic><topic>Nondestructive testing</topic><topic>Permanent magnets</topic><topic>Review</topic><topic>Sensors</topic><topic>Surface roughness</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Bo</creatorcontrib><creatorcontrib>Wu, Jianbo</creatorcontrib><creatorcontrib>Tu, Hongming</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Kang, Yihua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Bo</au><au>Wu, Jianbo</au><au>Tu, Hongming</au><au>Tang, Jian</au><au>Kang, Yihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Magnetic Flux Leakage Nondestructive Testing</atitle><jtitle>Materials</jtitle><date>2022-10-20</date><risdate>2022</risdate><volume>15</volume><issue>20</issue><spage>7362</spage><pages>7362-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Magnetic flux leakage (MFL) testing is a widely used nondestructive testing (NDT) method for the inspection of ferromagnetic materials. This review paper presents the basic principles of MFL testing and summarizes the recent advances in MFL. An analytical expression for the leakage magnetic field based on the 3D magnetic dipole model is provided. Based on the model, the effects of defect size, defect orientation, and liftoff distance have been analyzed. Other influencing factors, such as magnetization strength, testing speed, surface roughness, and stress, have also been introduced. As the most important steps of MFL, the excitation method (a permanent magnet, DC, AC, pulsed) and sensing methods (Hall element, GMR, TMR, etc.), have been introduced in detail. Finally, the algorithms for the quantification of defects and the applications of MFL have been introduced.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma15207362</doi><orcidid>https://orcid.org/0000-0002-4732-6732</orcidid><orcidid>https://orcid.org/0000-0001-9658-209X</orcidid><orcidid>https://orcid.org/0000-0003-2622-4769</orcidid><orcidid>https://orcid.org/0000-0002-1057-3932</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-10, Vol.15 (20), p.7362
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9610001
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Algorithms
Analysis
Defects
Ferromagnetic materials
Ferromagnetism
Influence
Inspection
Magnetic dipoles
Magnetic fields
Magnetic flux
Magnetic flux leakage testing
Magnetism
Magnetization
Magnets, Permanent
Nondestructive testing
Permanent magnets
Review
Sensors
Surface roughness
Three dimensional models
title A Review of Magnetic Flux Leakage Nondestructive Testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Magnetic%20Flux%20Leakage%20Nondestructive%20Testing&rft.jtitle=Materials&rft.au=Feng,%20Bo&rft.date=2022-10-20&rft.volume=15&rft.issue=20&rft.spage=7362&rft.pages=7362-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15207362&rft_dat=%3Cgale_pubme%3EA745740830%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728501612&rft_id=info:pmid/&rft_galeid=A745740830&rfr_iscdi=true