A Review of Magnetic Flux Leakage Nondestructive Testing
Magnetic flux leakage (MFL) testing is a widely used nondestructive testing (NDT) method for the inspection of ferromagnetic materials. This review paper presents the basic principles of MFL testing and summarizes the recent advances in MFL. An analytical expression for the leakage magnetic field ba...
Gespeichert in:
Veröffentlicht in: | Materials 2022-10, Vol.15 (20), p.7362 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 7362 |
container_title | Materials |
container_volume | 15 |
creator | Feng, Bo Wu, Jianbo Tu, Hongming Tang, Jian Kang, Yihua |
description | Magnetic flux leakage (MFL) testing is a widely used nondestructive testing (NDT) method for the inspection of ferromagnetic materials. This review paper presents the basic principles of MFL testing and summarizes the recent advances in MFL. An analytical expression for the leakage magnetic field based on the 3D magnetic dipole model is provided. Based on the model, the effects of defect size, defect orientation, and liftoff distance have been analyzed. Other influencing factors, such as magnetization strength, testing speed, surface roughness, and stress, have also been introduced. As the most important steps of MFL, the excitation method (a permanent magnet, DC, AC, pulsed) and sensing methods (Hall element, GMR, TMR, etc.), have been introduced in detail. Finally, the algorithms for the quantification of defects and the applications of MFL have been introduced. |
doi_str_mv | 10.3390/ma15207362 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9610001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745740830</galeid><sourcerecordid>A745740830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-117f0f621d1fd866313a043886f6a1b3685ce2ffbe1ca5d2d443f98c8c8ad40c3</originalsourceid><addsrcrecordid>eNpdkUtLBDEMxwdRUNa9-AkGvIiw2rSdTuciLIsvWBVEz6XbScfqTKvzWPXb22UXX82hIfnln4QkyQGQE8YKctpoyCjJmaBbyR4UhZhAwfn2L383GXfdM4mPMZC02EvkNL3HpcP3NNj0Rlcee2fSi3r4SOeoX3SF6W3wJXZ9O5jeLTF9iL7z1X6yY3Xd4Xjzj5LHi_OH2dVkfnd5PZvOJ4ZT2k8AckusoFCCLaUQDJgmnEkprNCwYEJmBqm1CwSjs5KWnDNbSBNNl5wYNkrO1rqvw6LB0qDvW12r19Y1uv1UQTv1N-Pdk6rCUhUC4p4QBY42Am14G-LwqnGdwbrWHsPQKZrTIgPBshV6-A99DkPr43orSmYEBNBInaypSteonLch9jXRSmycCR6ti_FpzrOcE8lILDheF5g2dF2L9nt6IGp1OfVzOfYFt6GJ0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728501612</pqid></control><display><type>article</type><title>A Review of Magnetic Flux Leakage Nondestructive Testing</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Feng, Bo ; Wu, Jianbo ; Tu, Hongming ; Tang, Jian ; Kang, Yihua</creator><creatorcontrib>Feng, Bo ; Wu, Jianbo ; Tu, Hongming ; Tang, Jian ; Kang, Yihua</creatorcontrib><description>Magnetic flux leakage (MFL) testing is a widely used nondestructive testing (NDT) method for the inspection of ferromagnetic materials. This review paper presents the basic principles of MFL testing and summarizes the recent advances in MFL. An analytical expression for the leakage magnetic field based on the 3D magnetic dipole model is provided. Based on the model, the effects of defect size, defect orientation, and liftoff distance have been analyzed. Other influencing factors, such as magnetization strength, testing speed, surface roughness, and stress, have also been introduced. As the most important steps of MFL, the excitation method (a permanent magnet, DC, AC, pulsed) and sensing methods (Hall element, GMR, TMR, etc.), have been introduced in detail. Finally, the algorithms for the quantification of defects and the applications of MFL have been introduced.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15207362</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Defects ; Ferromagnetic materials ; Ferromagnetism ; Influence ; Inspection ; Magnetic dipoles ; Magnetic fields ; Magnetic flux ; Magnetic flux leakage testing ; Magnetism ; Magnetization ; Magnets, Permanent ; Nondestructive testing ; Permanent magnets ; Review ; Sensors ; Surface roughness ; Three dimensional models</subject><ispartof>Materials, 2022-10, Vol.15 (20), p.7362</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-117f0f621d1fd866313a043886f6a1b3685ce2ffbe1ca5d2d443f98c8c8ad40c3</citedby><cites>FETCH-LOGICAL-c422t-117f0f621d1fd866313a043886f6a1b3685ce2ffbe1ca5d2d443f98c8c8ad40c3</cites><orcidid>0000-0002-4732-6732 ; 0000-0001-9658-209X ; 0000-0003-2622-4769 ; 0000-0002-1057-3932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610001/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610001/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids></links><search><creatorcontrib>Feng, Bo</creatorcontrib><creatorcontrib>Wu, Jianbo</creatorcontrib><creatorcontrib>Tu, Hongming</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Kang, Yihua</creatorcontrib><title>A Review of Magnetic Flux Leakage Nondestructive Testing</title><title>Materials</title><description>Magnetic flux leakage (MFL) testing is a widely used nondestructive testing (NDT) method for the inspection of ferromagnetic materials. This review paper presents the basic principles of MFL testing and summarizes the recent advances in MFL. An analytical expression for the leakage magnetic field based on the 3D magnetic dipole model is provided. Based on the model, the effects of defect size, defect orientation, and liftoff distance have been analyzed. Other influencing factors, such as magnetization strength, testing speed, surface roughness, and stress, have also been introduced. As the most important steps of MFL, the excitation method (a permanent magnet, DC, AC, pulsed) and sensing methods (Hall element, GMR, TMR, etc.), have been introduced in detail. Finally, the algorithms for the quantification of defects and the applications of MFL have been introduced.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Defects</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetism</subject><subject>Influence</subject><subject>Inspection</subject><subject>Magnetic dipoles</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetic flux leakage testing</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnets, Permanent</subject><subject>Nondestructive testing</subject><subject>Permanent magnets</subject><subject>Review</subject><subject>Sensors</subject><subject>Surface roughness</subject><subject>Three dimensional models</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtLBDEMxwdRUNa9-AkGvIiw2rSdTuciLIsvWBVEz6XbScfqTKvzWPXb22UXX82hIfnln4QkyQGQE8YKctpoyCjJmaBbyR4UhZhAwfn2L383GXfdM4mPMZC02EvkNL3HpcP3NNj0Rlcee2fSi3r4SOeoX3SF6W3wJXZ9O5jeLTF9iL7z1X6yY3Xd4Xjzj5LHi_OH2dVkfnd5PZvOJ4ZT2k8AckusoFCCLaUQDJgmnEkprNCwYEJmBqm1CwSjs5KWnDNbSBNNl5wYNkrO1rqvw6LB0qDvW12r19Y1uv1UQTv1N-Pdk6rCUhUC4p4QBY42Am14G-LwqnGdwbrWHsPQKZrTIgPBshV6-A99DkPr43orSmYEBNBInaypSteonLch9jXRSmycCR6ti_FpzrOcE8lILDheF5g2dF2L9nt6IGp1OfVzOfYFt6GJ0A</recordid><startdate>20221020</startdate><enddate>20221020</enddate><creator>Feng, Bo</creator><creator>Wu, Jianbo</creator><creator>Tu, Hongming</creator><creator>Tang, Jian</creator><creator>Kang, Yihua</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4732-6732</orcidid><orcidid>https://orcid.org/0000-0001-9658-209X</orcidid><orcidid>https://orcid.org/0000-0003-2622-4769</orcidid><orcidid>https://orcid.org/0000-0002-1057-3932</orcidid></search><sort><creationdate>20221020</creationdate><title>A Review of Magnetic Flux Leakage Nondestructive Testing</title><author>Feng, Bo ; Wu, Jianbo ; Tu, Hongming ; Tang, Jian ; Kang, Yihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-117f0f621d1fd866313a043886f6a1b3685ce2ffbe1ca5d2d443f98c8c8ad40c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Defects</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetism</topic><topic>Influence</topic><topic>Inspection</topic><topic>Magnetic dipoles</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetic flux leakage testing</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnets, Permanent</topic><topic>Nondestructive testing</topic><topic>Permanent magnets</topic><topic>Review</topic><topic>Sensors</topic><topic>Surface roughness</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Bo</creatorcontrib><creatorcontrib>Wu, Jianbo</creatorcontrib><creatorcontrib>Tu, Hongming</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Kang, Yihua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Bo</au><au>Wu, Jianbo</au><au>Tu, Hongming</au><au>Tang, Jian</au><au>Kang, Yihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Magnetic Flux Leakage Nondestructive Testing</atitle><jtitle>Materials</jtitle><date>2022-10-20</date><risdate>2022</risdate><volume>15</volume><issue>20</issue><spage>7362</spage><pages>7362-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Magnetic flux leakage (MFL) testing is a widely used nondestructive testing (NDT) method for the inspection of ferromagnetic materials. This review paper presents the basic principles of MFL testing and summarizes the recent advances in MFL. An analytical expression for the leakage magnetic field based on the 3D magnetic dipole model is provided. Based on the model, the effects of defect size, defect orientation, and liftoff distance have been analyzed. Other influencing factors, such as magnetization strength, testing speed, surface roughness, and stress, have also been introduced. As the most important steps of MFL, the excitation method (a permanent magnet, DC, AC, pulsed) and sensing methods (Hall element, GMR, TMR, etc.), have been introduced in detail. Finally, the algorithms for the quantification of defects and the applications of MFL have been introduced.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma15207362</doi><orcidid>https://orcid.org/0000-0002-4732-6732</orcidid><orcidid>https://orcid.org/0000-0001-9658-209X</orcidid><orcidid>https://orcid.org/0000-0003-2622-4769</orcidid><orcidid>https://orcid.org/0000-0002-1057-3932</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-10, Vol.15 (20), p.7362 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9610001 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Algorithms Analysis Defects Ferromagnetic materials Ferromagnetism Influence Inspection Magnetic dipoles Magnetic fields Magnetic flux Magnetic flux leakage testing Magnetism Magnetization Magnets, Permanent Nondestructive testing Permanent magnets Review Sensors Surface roughness Three dimensional models |
title | A Review of Magnetic Flux Leakage Nondestructive Testing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Magnetic%20Flux%20Leakage%20Nondestructive%20Testing&rft.jtitle=Materials&rft.au=Feng,%20Bo&rft.date=2022-10-20&rft.volume=15&rft.issue=20&rft.spage=7362&rft.pages=7362-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15207362&rft_dat=%3Cgale_pubme%3EA745740830%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728501612&rft_id=info:pmid/&rft_galeid=A745740830&rfr_iscdi=true |