Insulation Foam Concrete Nanomodified with Microsilica and Reinforced with Polypropylene Fiber for the Improvement of Characteristics
Some of the primary problems of construction are brittleness and low the mechanical properties of good thermal insulation materials. Heat-insulating foam concrete has a low thermal conductivity. However, it is practically impossible to transport it over long distances since corners are cracked durin...
Gespeichert in:
Veröffentlicht in: | Polymers 2022-10, Vol.14 (20), p.4401 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 4401 |
container_title | Polymers |
container_volume | 14 |
creator | Meskhi, Besarion Beskopylny, Alexey N. Stel’makh, Sergey A. Shcherban’, Evgenii M. Mailyan, Levon R. Beskopylny, Nikita Chernil’nik, Andrei El’shaeva, Diana |
description | Some of the primary problems of construction are brittleness and low the mechanical properties of good thermal insulation materials. Heat-insulating foam concrete has a low thermal conductivity. However, it is practically impossible to transport it over long distances since corners are cracked during transportation, the structure is broken, and, in principle, the fragility of this material is a big problem for modern buildings. The purpose of this study was to develop a heat-insulating foam concrete with improved characteristics by experimentally selecting the optimal dosage of polypropylene fiber and a nanomodifying microsilica additive. Standard methods for determining the characteristics of fiber foam concrete were used as well as the method of optical microscopy to study the structure of the composite. It has been established that the use of polypropylene fiber with the optimal reinforcement range from 1% to 3% allows us to achieve an improvement in the mechanical and physical characteristics of fiber foam concrete. The optimal dosage of the nanomodifier introduced instead of a part of the binder (10%) and polypropylene fiber (2%) by weight of the binder was determined. The maximum values of increments in mechanical characteristics were 44% for compressive strength and 73% for tensile strength in bending. The values of the thermal conductivity coefficient at optimal dosages of the nanomodifier and fiber decreased by 9%. The absence of microcracking at the phase boundary between the polypropylene fiber and the hardened cement–sand matrix due to nanomodification was noted. |
doi_str_mv | 10.3390/polym14204401 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9609610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746439560</galeid><sourcerecordid>A746439560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-f94bbb722bce2f57d50a9340803a2f751f23043ec26b72bb9664923e4fddf2a93</originalsourceid><addsrcrecordid>eNpdks1vFCEYxidGE5vao3cSL16m5WtguZg0G1c3qR8xeiYM89KlmYERmJr9A_y_y2SrscIBwvPj4QHepnlN8CVjCl_NcTxOhFPMOSbPmjOKJWs5E_j5P_OXzUXOd7g23glB5Fnzex_yMpriY0C7aCa0jcEmKIA-mxCnOHjnYUC_fDmgT96mmP3orUEmDOgb-OBisn_0rzXCnOJ8HCEA2vkeEqo6KgdA-6kq9zBBKCg6tD2YZGyB5HPxNr9qXjgzZrh4HM-bH7v337cf25svH_bb65vWckZK6xTv-15S2lugrpNDh41iHG8wM9TJjjjKMGdgqahU3yshuKIMuBsGRyt63rw7-c5LP8Fga5pkRj0nP5l01NF4_VQJ_qBv471WAitBcDV4-2iQ4s8FctGTzxbG0QSIS9ZUUtWRTadW9M1_6F1cUqjXW6lNRzmRslKXJ-rWjKDX96zn2toHmLyNAZyv69eSC85UJ1bb9rRh_YucwP1NT7BeK0E_qQT2ANKpqjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728524177</pqid></control><display><type>article</type><title>Insulation Foam Concrete Nanomodified with Microsilica and Reinforced with Polypropylene Fiber for the Improvement of Characteristics</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Meskhi, Besarion ; Beskopylny, Alexey N. ; Stel’makh, Sergey A. ; Shcherban’, Evgenii M. ; Mailyan, Levon R. ; Beskopylny, Nikita ; Chernil’nik, Andrei ; El’shaeva, Diana</creator><creatorcontrib>Meskhi, Besarion ; Beskopylny, Alexey N. ; Stel’makh, Sergey A. ; Shcherban’, Evgenii M. ; Mailyan, Levon R. ; Beskopylny, Nikita ; Chernil’nik, Andrei ; El’shaeva, Diana</creatorcontrib><description>Some of the primary problems of construction are brittleness and low the mechanical properties of good thermal insulation materials. Heat-insulating foam concrete has a low thermal conductivity. However, it is practically impossible to transport it over long distances since corners are cracked during transportation, the structure is broken, and, in principle, the fragility of this material is a big problem for modern buildings. The purpose of this study was to develop a heat-insulating foam concrete with improved characteristics by experimentally selecting the optimal dosage of polypropylene fiber and a nanomodifying microsilica additive. Standard methods for determining the characteristics of fiber foam concrete were used as well as the method of optical microscopy to study the structure of the composite. It has been established that the use of polypropylene fiber with the optimal reinforcement range from 1% to 3% allows us to achieve an improvement in the mechanical and physical characteristics of fiber foam concrete. The optimal dosage of the nanomodifier introduced instead of a part of the binder (10%) and polypropylene fiber (2%) by weight of the binder was determined. The maximum values of increments in mechanical characteristics were 44% for compressive strength and 73% for tensile strength in bending. The values of the thermal conductivity coefficient at optimal dosages of the nanomodifier and fiber decreased by 9%. The absence of microcracking at the phase boundary between the polypropylene fiber and the hardened cement–sand matrix due to nanomodification was noted.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14204401</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additives ; Bend strength ; Cement ; Compressive strength ; Concrete mixing ; Crack initiation ; Dosage ; Fracture mechanics ; Fragility ; Heat conductivity ; Heat transfer ; Insulation ; Laboratories ; Materials science ; Mechanical properties ; Microcracks ; Optical microscopy ; Physical properties ; Polypropylene ; Reinforced concrete ; Research methodology ; Silica fume ; Tensile strength ; Thermal conductivity ; Thermal insulation</subject><ispartof>Polymers, 2022-10, Vol.14 (20), p.4401</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-f94bbb722bce2f57d50a9340803a2f751f23043ec26b72bb9664923e4fddf2a93</citedby><cites>FETCH-LOGICAL-c431t-f94bbb722bce2f57d50a9340803a2f751f23043ec26b72bb9664923e4fddf2a93</cites><orcidid>0000-0002-6173-9365 ; 0000-0002-0103-2587 ; 0000-0002-0364-5504 ; 0000-0001-5376-247X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609610/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609610/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Meskhi, Besarion</creatorcontrib><creatorcontrib>Beskopylny, Alexey N.</creatorcontrib><creatorcontrib>Stel’makh, Sergey A.</creatorcontrib><creatorcontrib>Shcherban’, Evgenii M.</creatorcontrib><creatorcontrib>Mailyan, Levon R.</creatorcontrib><creatorcontrib>Beskopylny, Nikita</creatorcontrib><creatorcontrib>Chernil’nik, Andrei</creatorcontrib><creatorcontrib>El’shaeva, Diana</creatorcontrib><title>Insulation Foam Concrete Nanomodified with Microsilica and Reinforced with Polypropylene Fiber for the Improvement of Characteristics</title><title>Polymers</title><description>Some of the primary problems of construction are brittleness and low the mechanical properties of good thermal insulation materials. Heat-insulating foam concrete has a low thermal conductivity. However, it is practically impossible to transport it over long distances since corners are cracked during transportation, the structure is broken, and, in principle, the fragility of this material is a big problem for modern buildings. The purpose of this study was to develop a heat-insulating foam concrete with improved characteristics by experimentally selecting the optimal dosage of polypropylene fiber and a nanomodifying microsilica additive. Standard methods for determining the characteristics of fiber foam concrete were used as well as the method of optical microscopy to study the structure of the composite. It has been established that the use of polypropylene fiber with the optimal reinforcement range from 1% to 3% allows us to achieve an improvement in the mechanical and physical characteristics of fiber foam concrete. The optimal dosage of the nanomodifier introduced instead of a part of the binder (10%) and polypropylene fiber (2%) by weight of the binder was determined. The maximum values of increments in mechanical characteristics were 44% for compressive strength and 73% for tensile strength in bending. The values of the thermal conductivity coefficient at optimal dosages of the nanomodifier and fiber decreased by 9%. The absence of microcracking at the phase boundary between the polypropylene fiber and the hardened cement–sand matrix due to nanomodification was noted.</description><subject>Additives</subject><subject>Bend strength</subject><subject>Cement</subject><subject>Compressive strength</subject><subject>Concrete mixing</subject><subject>Crack initiation</subject><subject>Dosage</subject><subject>Fracture mechanics</subject><subject>Fragility</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Insulation</subject><subject>Laboratories</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Microcracks</subject><subject>Optical microscopy</subject><subject>Physical properties</subject><subject>Polypropylene</subject><subject>Reinforced concrete</subject><subject>Research methodology</subject><subject>Silica fume</subject><subject>Tensile strength</subject><subject>Thermal conductivity</subject><subject>Thermal insulation</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdks1vFCEYxidGE5vao3cSL16m5WtguZg0G1c3qR8xeiYM89KlmYERmJr9A_y_y2SrscIBwvPj4QHepnlN8CVjCl_NcTxOhFPMOSbPmjOKJWs5E_j5P_OXzUXOd7g23glB5Fnzex_yMpriY0C7aCa0jcEmKIA-mxCnOHjnYUC_fDmgT96mmP3orUEmDOgb-OBisn_0rzXCnOJ8HCEA2vkeEqo6KgdA-6kq9zBBKCg6tD2YZGyB5HPxNr9qXjgzZrh4HM-bH7v337cf25svH_bb65vWckZK6xTv-15S2lugrpNDh41iHG8wM9TJjjjKMGdgqahU3yshuKIMuBsGRyt63rw7-c5LP8Fga5pkRj0nP5l01NF4_VQJ_qBv471WAitBcDV4-2iQ4s8FctGTzxbG0QSIS9ZUUtWRTadW9M1_6F1cUqjXW6lNRzmRslKXJ-rWjKDX96zn2toHmLyNAZyv69eSC85UJ1bb9rRh_YucwP1NT7BeK0E_qQT2ANKpqjA</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Meskhi, Besarion</creator><creator>Beskopylny, Alexey N.</creator><creator>Stel’makh, Sergey A.</creator><creator>Shcherban’, Evgenii M.</creator><creator>Mailyan, Levon R.</creator><creator>Beskopylny, Nikita</creator><creator>Chernil’nik, Andrei</creator><creator>El’shaeva, Diana</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6173-9365</orcidid><orcidid>https://orcid.org/0000-0002-0103-2587</orcidid><orcidid>https://orcid.org/0000-0002-0364-5504</orcidid><orcidid>https://orcid.org/0000-0001-5376-247X</orcidid></search><sort><creationdate>20221018</creationdate><title>Insulation Foam Concrete Nanomodified with Microsilica and Reinforced with Polypropylene Fiber for the Improvement of Characteristics</title><author>Meskhi, Besarion ; Beskopylny, Alexey N. ; Stel’makh, Sergey A. ; Shcherban’, Evgenii M. ; Mailyan, Levon R. ; Beskopylny, Nikita ; Chernil’nik, Andrei ; El’shaeva, Diana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-f94bbb722bce2f57d50a9340803a2f751f23043ec26b72bb9664923e4fddf2a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Bend strength</topic><topic>Cement</topic><topic>Compressive strength</topic><topic>Concrete mixing</topic><topic>Crack initiation</topic><topic>Dosage</topic><topic>Fracture mechanics</topic><topic>Fragility</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Insulation</topic><topic>Laboratories</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Microcracks</topic><topic>Optical microscopy</topic><topic>Physical properties</topic><topic>Polypropylene</topic><topic>Reinforced concrete</topic><topic>Research methodology</topic><topic>Silica fume</topic><topic>Tensile strength</topic><topic>Thermal conductivity</topic><topic>Thermal insulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meskhi, Besarion</creatorcontrib><creatorcontrib>Beskopylny, Alexey N.</creatorcontrib><creatorcontrib>Stel’makh, Sergey A.</creatorcontrib><creatorcontrib>Shcherban’, Evgenii M.</creatorcontrib><creatorcontrib>Mailyan, Levon R.</creatorcontrib><creatorcontrib>Beskopylny, Nikita</creatorcontrib><creatorcontrib>Chernil’nik, Andrei</creatorcontrib><creatorcontrib>El’shaeva, Diana</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meskhi, Besarion</au><au>Beskopylny, Alexey N.</au><au>Stel’makh, Sergey A.</au><au>Shcherban’, Evgenii M.</au><au>Mailyan, Levon R.</au><au>Beskopylny, Nikita</au><au>Chernil’nik, Andrei</au><au>El’shaeva, Diana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulation Foam Concrete Nanomodified with Microsilica and Reinforced with Polypropylene Fiber for the Improvement of Characteristics</atitle><jtitle>Polymers</jtitle><date>2022-10-18</date><risdate>2022</risdate><volume>14</volume><issue>20</issue><spage>4401</spage><pages>4401-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Some of the primary problems of construction are brittleness and low the mechanical properties of good thermal insulation materials. Heat-insulating foam concrete has a low thermal conductivity. However, it is practically impossible to transport it over long distances since corners are cracked during transportation, the structure is broken, and, in principle, the fragility of this material is a big problem for modern buildings. The purpose of this study was to develop a heat-insulating foam concrete with improved characteristics by experimentally selecting the optimal dosage of polypropylene fiber and a nanomodifying microsilica additive. Standard methods for determining the characteristics of fiber foam concrete were used as well as the method of optical microscopy to study the structure of the composite. It has been established that the use of polypropylene fiber with the optimal reinforcement range from 1% to 3% allows us to achieve an improvement in the mechanical and physical characteristics of fiber foam concrete. The optimal dosage of the nanomodifier introduced instead of a part of the binder (10%) and polypropylene fiber (2%) by weight of the binder was determined. The maximum values of increments in mechanical characteristics were 44% for compressive strength and 73% for tensile strength in bending. The values of the thermal conductivity coefficient at optimal dosages of the nanomodifier and fiber decreased by 9%. The absence of microcracking at the phase boundary between the polypropylene fiber and the hardened cement–sand matrix due to nanomodification was noted.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/polym14204401</doi><orcidid>https://orcid.org/0000-0002-6173-9365</orcidid><orcidid>https://orcid.org/0000-0002-0103-2587</orcidid><orcidid>https://orcid.org/0000-0002-0364-5504</orcidid><orcidid>https://orcid.org/0000-0001-5376-247X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2022-10, Vol.14 (20), p.4401 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9609610 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Additives Bend strength Cement Compressive strength Concrete mixing Crack initiation Dosage Fracture mechanics Fragility Heat conductivity Heat transfer Insulation Laboratories Materials science Mechanical properties Microcracks Optical microscopy Physical properties Polypropylene Reinforced concrete Research methodology Silica fume Tensile strength Thermal conductivity Thermal insulation |
title | Insulation Foam Concrete Nanomodified with Microsilica and Reinforced with Polypropylene Fiber for the Improvement of Characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulation%20Foam%20Concrete%20Nanomodified%20with%20Microsilica%20and%20Reinforced%20with%20Polypropylene%20Fiber%20for%20the%20Improvement%20of%20Characteristics&rft.jtitle=Polymers&rft.au=Meskhi,%20Besarion&rft.date=2022-10-18&rft.volume=14&rft.issue=20&rft.spage=4401&rft.pages=4401-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14204401&rft_dat=%3Cgale_pubme%3EA746439560%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728524177&rft_id=info:pmid/&rft_galeid=A746439560&rfr_iscdi=true |