In vitro Characterization of Enhanced Human Immune Responses by GM-CSF Encoding HSV-1-Induced Melanoma Cells

Purpose: We studied the innate and adaptive immune response against melanoma cells after JS-1 (wild-type herpes simplex virus 1, wt HSV-1) or Talimogene laherparepvec (T-VEC) infection and evaluated the antitumoral efficacy in human melanoma cells. We analyzed the putative synergistic biological and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:OncoTargets and therapy 2022-10, Vol.15, p.1291-1307
Hauptverfasser: Delic, Maike, Boeswald, Veronika, Goepfert, Katrin, Pabst, Petra, Moehler, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1307
container_issue
container_start_page 1291
container_title OncoTargets and therapy
container_volume 15
creator Delic, Maike
Boeswald, Veronika
Goepfert, Katrin
Pabst, Petra
Moehler, Markus
description Purpose: We studied the innate and adaptive immune response against melanoma cells after JS-1 (wild-type herpes simplex virus 1, wt HSV-1) or Talimogene laherparepvec (T-VEC) infection and evaluated the antitumoral efficacy in human melanoma cells. We analyzed the putative synergistic biological and immunological effects of JS-1 or T-VEC combined with cytostatic drugs in human tumor and immune cells. T-VEC is a genetically modified strain of HSV-1. Genetic modifications (insertion of the granulocytemacrophage colony-stimulating factor (GM-CSF) gene) were made to attenuate the virus and increase selectivity for cancer cells. In addition to the direct oncolytic effect, we investigated the immune stimulatory effects of T-VEC by comparing it with JS-1. JS-1 is identical T-VEC except for the inserted GM-CSF gene. Materials and Methods: We analyzed the effects of T-VEC and JS-1 with cytostatic drugs in human tumor-immune cell coculture experiments. After coculture, the surface markers CD80, CD83 and CD86 were measured by fluorescence-activated cell sorting and the cytokines, interleukin (IL)-2, IL-6, tumor necrosis factor (TNF)-a and GM-CSF, by enzyme-linked immunosorbent assays. Furthermore, we analyzed the potential of the viruses to induce T cell activation, measured on the basis of CD4, CD8 and CD69. Analysis of these markers and cytokines allows for conclusions to be drawn concerning the maturation of dendritic cells (DCs) and the immunostimulatory effects of the treatment. Results: We documented increased activation of human cytotoxic T lymphocytes after infection by both HSV-1 strains and treatment with cytostatic drugs without significant differences between T-VEC and JS-1. Conclusion: We demonstrated an immune response as a result of infection with both viruses, but T-VEC was in vitro not stronger than JS-1. The immunostimulatory effects of the viruses could be partially increased by chemotherapy, providing a rationale for future preclinical studies designed to explore T-VEC in combined regimens. Keywords: oncolytic virotherapy, immunotherapy, dendritic cells, T-VEC, immunostimulatory effect
doi_str_mv 10.2147/OTT.S350136
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9606445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A727878486</galeid><sourcerecordid>A727878486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-6353fefd6ff64b72222fea844be84cb227e71b577253ed6f8c7487195a39a1e13</originalsourceid><addsrcrecordid>eNptkl1rHCEYhYfSQtO0V_0DQqEUymzHj1H3phCGJLuQEOhueyuO87prmNGtzgTSX1-HLG22VAVFn3Pk1VMU73G1IJiJL3fb7WJD6wpT_qI4w1jIki9p9fLZ-nXxJqX7quJcEnZW9GuPHtwYA2r2OmozQnS_9OiCR8GiS7_X3kCHVtOgPVoPw-QBfYN0CD5BQu0jur4tm81VJk3onN-h1eZHicu176ZZdwu99mHQqIG-T2-LV1b3Cd4d5_Pi-9XltlmVN3fX6-bipjQMs7HktKYWbMet5awVJDcLWjLWgmSmJUSAwG0tBKkpZEoawaTAy1rTpcaA6Xnx9cn3MLUDdAb8GHWvDtENOj6qoJ06PfFur3bhQS15xRmrs8Gno0EMPydIoxpcMrkE7SFMSRFBM8gJYxn98A96H6boc3kzJXAekvyldroH5bwN-V4zm6oLQYQUkkmeqcV_qNw7GJwJHqzL-yeCj88Ee9D9uE-hn-b_S6fg5yfQxJBSBPvnMXCl5uioHB11jA79DXkos94</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737137182</pqid></control><display><type>article</type><title>In vitro Characterization of Enhanced Human Immune Responses by GM-CSF Encoding HSV-1-Induced Melanoma Cells</title><source>Taylor &amp; Francis Open Access</source><source>DOVE Medical Press Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Delic, Maike ; Boeswald, Veronika ; Goepfert, Katrin ; Pabst, Petra ; Moehler, Markus</creator><creatorcontrib>Delic, Maike ; Boeswald, Veronika ; Goepfert, Katrin ; Pabst, Petra ; Moehler, Markus</creatorcontrib><description>Purpose: We studied the innate and adaptive immune response against melanoma cells after JS-1 (wild-type herpes simplex virus 1, wt HSV-1) or Talimogene laherparepvec (T-VEC) infection and evaluated the antitumoral efficacy in human melanoma cells. We analyzed the putative synergistic biological and immunological effects of JS-1 or T-VEC combined with cytostatic drugs in human tumor and immune cells. T-VEC is a genetically modified strain of HSV-1. Genetic modifications (insertion of the granulocytemacrophage colony-stimulating factor (GM-CSF) gene) were made to attenuate the virus and increase selectivity for cancer cells. In addition to the direct oncolytic effect, we investigated the immune stimulatory effects of T-VEC by comparing it with JS-1. JS-1 is identical T-VEC except for the inserted GM-CSF gene. Materials and Methods: We analyzed the effects of T-VEC and JS-1 with cytostatic drugs in human tumor-immune cell coculture experiments. After coculture, the surface markers CD80, CD83 and CD86 were measured by fluorescence-activated cell sorting and the cytokines, interleukin (IL)-2, IL-6, tumor necrosis factor (TNF)-a and GM-CSF, by enzyme-linked immunosorbent assays. Furthermore, we analyzed the potential of the viruses to induce T cell activation, measured on the basis of CD4, CD8 and CD69. Analysis of these markers and cytokines allows for conclusions to be drawn concerning the maturation of dendritic cells (DCs) and the immunostimulatory effects of the treatment. Results: We documented increased activation of human cytotoxic T lymphocytes after infection by both HSV-1 strains and treatment with cytostatic drugs without significant differences between T-VEC and JS-1. Conclusion: We demonstrated an immune response as a result of infection with both viruses, but T-VEC was in vitro not stronger than JS-1. The immunostimulatory effects of the viruses could be partially increased by chemotherapy, providing a rationale for future preclinical studies designed to explore T-VEC in combined regimens. Keywords: oncolytic virotherapy, immunotherapy, dendritic cells, T-VEC, immunostimulatory effect</description><identifier>ISSN: 1178-6930</identifier><identifier>EISSN: 1178-6930</identifier><identifier>DOI: 10.2147/OTT.S350136</identifier><language>eng</language><publisher>Macclesfield: Dove Medical Press Limited</publisher><subject>Adaptive immunity ; Analysis ; Antigens ; Cancer ; Cancer therapies ; CD4 antigen ; CD69 antigen ; CD8 antigen ; CD80 antigen ; CD83 antigen ; CD86 antigen ; Cell activation ; Cell culture ; Chemotherapy ; Cloning ; Colony-stimulating factor ; Cytokines ; Cytotoxicity ; Dendritic cells ; Drug dosages ; Drug therapy, Combination ; Enzymes ; Flow cytometry ; Gene expression ; Genetically modified organisms ; Granulocyte-macrophage colony-stimulating factor ; Health aspects ; Herpes simplex ; Herpes viruses ; Immune response ; Immunostimulation ; Immunosuppressive agents ; Immunotherapy ; Infection ; Infections ; Interleukin 6 ; Lymphocytes ; Lymphocytes T ; Melanoma ; Oncolysis ; Original Research ; Radiation ; Surface markers ; T cells ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α ; Vaccines ; Vincristine ; Viral infections ; Viruses</subject><ispartof>OncoTargets and therapy, 2022-10, Vol.15, p.1291-1307</ispartof><rights>COPYRIGHT 2022 Dove Medical Press Limited</rights><rights>2022. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Delic et al. 2022 Delic et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-6353fefd6ff64b72222fea844be84cb227e71b577253ed6f8c7487195a39a1e13</citedby><cites>FETCH-LOGICAL-c414t-6353fefd6ff64b72222fea844be84cb227e71b577253ed6f8c7487195a39a1e13</cites><orcidid>0000-0003-4071-8562 ; 0000-0001-6603-7082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606445/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606445/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3862,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Delic, Maike</creatorcontrib><creatorcontrib>Boeswald, Veronika</creatorcontrib><creatorcontrib>Goepfert, Katrin</creatorcontrib><creatorcontrib>Pabst, Petra</creatorcontrib><creatorcontrib>Moehler, Markus</creatorcontrib><title>In vitro Characterization of Enhanced Human Immune Responses by GM-CSF Encoding HSV-1-Induced Melanoma Cells</title><title>OncoTargets and therapy</title><description>Purpose: We studied the innate and adaptive immune response against melanoma cells after JS-1 (wild-type herpes simplex virus 1, wt HSV-1) or Talimogene laherparepvec (T-VEC) infection and evaluated the antitumoral efficacy in human melanoma cells. We analyzed the putative synergistic biological and immunological effects of JS-1 or T-VEC combined with cytostatic drugs in human tumor and immune cells. T-VEC is a genetically modified strain of HSV-1. Genetic modifications (insertion of the granulocytemacrophage colony-stimulating factor (GM-CSF) gene) were made to attenuate the virus and increase selectivity for cancer cells. In addition to the direct oncolytic effect, we investigated the immune stimulatory effects of T-VEC by comparing it with JS-1. JS-1 is identical T-VEC except for the inserted GM-CSF gene. Materials and Methods: We analyzed the effects of T-VEC and JS-1 with cytostatic drugs in human tumor-immune cell coculture experiments. After coculture, the surface markers CD80, CD83 and CD86 were measured by fluorescence-activated cell sorting and the cytokines, interleukin (IL)-2, IL-6, tumor necrosis factor (TNF)-a and GM-CSF, by enzyme-linked immunosorbent assays. Furthermore, we analyzed the potential of the viruses to induce T cell activation, measured on the basis of CD4, CD8 and CD69. Analysis of these markers and cytokines allows for conclusions to be drawn concerning the maturation of dendritic cells (DCs) and the immunostimulatory effects of the treatment. Results: We documented increased activation of human cytotoxic T lymphocytes after infection by both HSV-1 strains and treatment with cytostatic drugs without significant differences between T-VEC and JS-1. Conclusion: We demonstrated an immune response as a result of infection with both viruses, but T-VEC was in vitro not stronger than JS-1. The immunostimulatory effects of the viruses could be partially increased by chemotherapy, providing a rationale for future preclinical studies designed to explore T-VEC in combined regimens. Keywords: oncolytic virotherapy, immunotherapy, dendritic cells, T-VEC, immunostimulatory effect</description><subject>Adaptive immunity</subject><subject>Analysis</subject><subject>Antigens</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>CD4 antigen</subject><subject>CD69 antigen</subject><subject>CD8 antigen</subject><subject>CD80 antigen</subject><subject>CD83 antigen</subject><subject>CD86 antigen</subject><subject>Cell activation</subject><subject>Cell culture</subject><subject>Chemotherapy</subject><subject>Cloning</subject><subject>Colony-stimulating factor</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Dendritic cells</subject><subject>Drug dosages</subject><subject>Drug therapy, Combination</subject><subject>Enzymes</subject><subject>Flow cytometry</subject><subject>Gene expression</subject><subject>Genetically modified organisms</subject><subject>Granulocyte-macrophage colony-stimulating factor</subject><subject>Health aspects</subject><subject>Herpes simplex</subject><subject>Herpes viruses</subject><subject>Immune response</subject><subject>Immunostimulation</subject><subject>Immunosuppressive agents</subject><subject>Immunotherapy</subject><subject>Infection</subject><subject>Infections</subject><subject>Interleukin 6</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Melanoma</subject><subject>Oncolysis</subject><subject>Original Research</subject><subject>Radiation</subject><subject>Surface markers</subject><subject>T cells</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><subject>Vaccines</subject><subject>Vincristine</subject><subject>Viral infections</subject><subject>Viruses</subject><issn>1178-6930</issn><issn>1178-6930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkl1rHCEYhYfSQtO0V_0DQqEUymzHj1H3phCGJLuQEOhueyuO87prmNGtzgTSX1-HLG22VAVFn3Pk1VMU73G1IJiJL3fb7WJD6wpT_qI4w1jIki9p9fLZ-nXxJqX7quJcEnZW9GuPHtwYA2r2OmozQnS_9OiCR8GiS7_X3kCHVtOgPVoPw-QBfYN0CD5BQu0jur4tm81VJk3onN-h1eZHicu176ZZdwu99mHQqIG-T2-LV1b3Cd4d5_Pi-9XltlmVN3fX6-bipjQMs7HktKYWbMet5awVJDcLWjLWgmSmJUSAwG0tBKkpZEoawaTAy1rTpcaA6Xnx9cn3MLUDdAb8GHWvDtENOj6qoJ06PfFur3bhQS15xRmrs8Gno0EMPydIoxpcMrkE7SFMSRFBM8gJYxn98A96H6boc3kzJXAekvyldroH5bwN-V4zm6oLQYQUkkmeqcV_qNw7GJwJHqzL-yeCj88Ee9D9uE-hn-b_S6fg5yfQxJBSBPvnMXCl5uioHB11jA79DXkos94</recordid><startdate>20221031</startdate><enddate>20221031</enddate><creator>Delic, Maike</creator><creator>Boeswald, Veronika</creator><creator>Goepfert, Katrin</creator><creator>Pabst, Petra</creator><creator>Moehler, Markus</creator><general>Dove Medical Press Limited</general><general>Taylor &amp; Francis Ltd</general><general>Dove</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4071-8562</orcidid><orcidid>https://orcid.org/0000-0001-6603-7082</orcidid></search><sort><creationdate>20221031</creationdate><title>In vitro Characterization of Enhanced Human Immune Responses by GM-CSF Encoding HSV-1-Induced Melanoma Cells</title><author>Delic, Maike ; Boeswald, Veronika ; Goepfert, Katrin ; Pabst, Petra ; Moehler, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-6353fefd6ff64b72222fea844be84cb227e71b577253ed6f8c7487195a39a1e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive immunity</topic><topic>Analysis</topic><topic>Antigens</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>CD4 antigen</topic><topic>CD69 antigen</topic><topic>CD8 antigen</topic><topic>CD80 antigen</topic><topic>CD83 antigen</topic><topic>CD86 antigen</topic><topic>Cell activation</topic><topic>Cell culture</topic><topic>Chemotherapy</topic><topic>Cloning</topic><topic>Colony-stimulating factor</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Dendritic cells</topic><topic>Drug dosages</topic><topic>Drug therapy, Combination</topic><topic>Enzymes</topic><topic>Flow cytometry</topic><topic>Gene expression</topic><topic>Genetically modified organisms</topic><topic>Granulocyte-macrophage colony-stimulating factor</topic><topic>Health aspects</topic><topic>Herpes simplex</topic><topic>Herpes viruses</topic><topic>Immune response</topic><topic>Immunostimulation</topic><topic>Immunosuppressive agents</topic><topic>Immunotherapy</topic><topic>Infection</topic><topic>Infections</topic><topic>Interleukin 6</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Melanoma</topic><topic>Oncolysis</topic><topic>Original Research</topic><topic>Radiation</topic><topic>Surface markers</topic><topic>T cells</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><topic>Vaccines</topic><topic>Vincristine</topic><topic>Viral infections</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delic, Maike</creatorcontrib><creatorcontrib>Boeswald, Veronika</creatorcontrib><creatorcontrib>Goepfert, Katrin</creatorcontrib><creatorcontrib>Pabst, Petra</creatorcontrib><creatorcontrib>Moehler, Markus</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Research Library (ProQuest)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>OncoTargets and therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delic, Maike</au><au>Boeswald, Veronika</au><au>Goepfert, Katrin</au><au>Pabst, Petra</au><au>Moehler, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro Characterization of Enhanced Human Immune Responses by GM-CSF Encoding HSV-1-Induced Melanoma Cells</atitle><jtitle>OncoTargets and therapy</jtitle><date>2022-10-31</date><risdate>2022</risdate><volume>15</volume><spage>1291</spage><epage>1307</epage><pages>1291-1307</pages><issn>1178-6930</issn><eissn>1178-6930</eissn><abstract>Purpose: We studied the innate and adaptive immune response against melanoma cells after JS-1 (wild-type herpes simplex virus 1, wt HSV-1) or Talimogene laherparepvec (T-VEC) infection and evaluated the antitumoral efficacy in human melanoma cells. We analyzed the putative synergistic biological and immunological effects of JS-1 or T-VEC combined with cytostatic drugs in human tumor and immune cells. T-VEC is a genetically modified strain of HSV-1. Genetic modifications (insertion of the granulocytemacrophage colony-stimulating factor (GM-CSF) gene) were made to attenuate the virus and increase selectivity for cancer cells. In addition to the direct oncolytic effect, we investigated the immune stimulatory effects of T-VEC by comparing it with JS-1. JS-1 is identical T-VEC except for the inserted GM-CSF gene. Materials and Methods: We analyzed the effects of T-VEC and JS-1 with cytostatic drugs in human tumor-immune cell coculture experiments. After coculture, the surface markers CD80, CD83 and CD86 were measured by fluorescence-activated cell sorting and the cytokines, interleukin (IL)-2, IL-6, tumor necrosis factor (TNF)-a and GM-CSF, by enzyme-linked immunosorbent assays. Furthermore, we analyzed the potential of the viruses to induce T cell activation, measured on the basis of CD4, CD8 and CD69. Analysis of these markers and cytokines allows for conclusions to be drawn concerning the maturation of dendritic cells (DCs) and the immunostimulatory effects of the treatment. Results: We documented increased activation of human cytotoxic T lymphocytes after infection by both HSV-1 strains and treatment with cytostatic drugs without significant differences between T-VEC and JS-1. Conclusion: We demonstrated an immune response as a result of infection with both viruses, but T-VEC was in vitro not stronger than JS-1. The immunostimulatory effects of the viruses could be partially increased by chemotherapy, providing a rationale for future preclinical studies designed to explore T-VEC in combined regimens. Keywords: oncolytic virotherapy, immunotherapy, dendritic cells, T-VEC, immunostimulatory effect</abstract><cop>Macclesfield</cop><pub>Dove Medical Press Limited</pub><doi>10.2147/OTT.S350136</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4071-8562</orcidid><orcidid>https://orcid.org/0000-0001-6603-7082</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1178-6930
ispartof OncoTargets and therapy, 2022-10, Vol.15, p.1291-1307
issn 1178-6930
1178-6930
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9606445
source Taylor & Francis Open Access; DOVE Medical Press Journals; PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access
subjects Adaptive immunity
Analysis
Antigens
Cancer
Cancer therapies
CD4 antigen
CD69 antigen
CD8 antigen
CD80 antigen
CD83 antigen
CD86 antigen
Cell activation
Cell culture
Chemotherapy
Cloning
Colony-stimulating factor
Cytokines
Cytotoxicity
Dendritic cells
Drug dosages
Drug therapy, Combination
Enzymes
Flow cytometry
Gene expression
Genetically modified organisms
Granulocyte-macrophage colony-stimulating factor
Health aspects
Herpes simplex
Herpes viruses
Immune response
Immunostimulation
Immunosuppressive agents
Immunotherapy
Infection
Infections
Interleukin 6
Lymphocytes
Lymphocytes T
Melanoma
Oncolysis
Original Research
Radiation
Surface markers
T cells
Tumor necrosis factor-TNF
Tumor necrosis factor-α
Vaccines
Vincristine
Viral infections
Viruses
title In vitro Characterization of Enhanced Human Immune Responses by GM-CSF Encoding HSV-1-Induced Melanoma Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20Characterization%20of%20Enhanced%20Human%20Immune%20Responses%20by%20GM-CSF%20Encoding%20HSV-1-Induced%20Melanoma%20Cells&rft.jtitle=OncoTargets%20and%20therapy&rft.au=Delic,%20Maike&rft.date=2022-10-31&rft.volume=15&rft.spage=1291&rft.epage=1307&rft.pages=1291-1307&rft.issn=1178-6930&rft.eissn=1178-6930&rft_id=info:doi/10.2147/OTT.S350136&rft_dat=%3Cgale_pubme%3EA727878486%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737137182&rft_id=info:pmid/&rft_galeid=A727878486&rfr_iscdi=true