Status Forecasting Based on the Baseline Information Using Logistic Regresssion

In the status forecasting problem, classification models such as logistic regression with input variables such as physiological, diagnostic, and treatment variables are typical ways of modeling. However, the parameter value and model performance differ among individuals with different baseline infor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2022-10, Vol.24 (10), p.1481
Hauptverfasser: Zhao, Xin, Nie, Xiaokai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1481
container_title Entropy (Basel, Switzerland)
container_volume 24
creator Zhao, Xin
Nie, Xiaokai
description In the status forecasting problem, classification models such as logistic regression with input variables such as physiological, diagnostic, and treatment variables are typical ways of modeling. However, the parameter value and model performance differ among individuals with different baseline information. To cope with these difficulties, a subgroup analysis is conducted, in which models' ANOVA and rpart are proposed to explore the influence of baseline information on the parameters and model performance. The results show that the logistic regression model achieves satisfactory performance, which is generally higher than 0.95 in AUC and around 0.9 in F1 and balanced accuracy. The subgroup analysis presents the prior parameter values for monitoring variables including SpO[sub.2], milrinone, non-opioid analgesics and dobutamine. The proposed method can be used to explore variables that are and are not medically related to the baseline variables.
doi_str_mv 10.3390/e24101481
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9601351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745709490</galeid><sourcerecordid>A745709490</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1501-77e00356d8ce00868e56d7a79fc90daae4c51049b14787ed0f30bc4daab763b33</originalsourceid><addsrcrecordid>eNptUN9LwzAQDqLgnD74HxR87rw0adO8CHM4HQwG6p5Dml67jLaZTSf43xt14AS5h_vuvh8cR8g1hQljEm4x4RQoz-kJGVGQMuYM4PQIn5ML77cACUtoNiKrl0EPex_NXY9G-8F2dXSvPZaR66Jhg99DYzuMFl3l-lYPNhBr_6VbutoGh4mese7Rex-oS3JW6cbj1aGPyXr-8Dp7iperx8VsuoxrmgKNhUAAlmZlbgLIsxwDFlrIykgotUZuUgpcFpSLXGAJFYPC8MAUImMFY2Ny95O72xctlga7odeN2vW21f2Hctqqv0xnN6p270pmQFlKQ8DNIaB3b3v0g9q6fd-Fm1UikpxnnKb5r6rWDSobXhDCTGu9UVPBUwGSSwiqyT-qUCW21rgOKxv2R4ZPop-BzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728464158</pqid></control><display><type>article</type><title>Status Forecasting Based on the Baseline Information Using Logistic Regresssion</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhao, Xin ; Nie, Xiaokai</creator><creatorcontrib>Zhao, Xin ; Nie, Xiaokai</creatorcontrib><description>In the status forecasting problem, classification models such as logistic regression with input variables such as physiological, diagnostic, and treatment variables are typical ways of modeling. However, the parameter value and model performance differ among individuals with different baseline information. To cope with these difficulties, a subgroup analysis is conducted, in which models' ANOVA and rpart are proposed to explore the influence of baseline information on the parameters and model performance. The results show that the logistic regression model achieves satisfactory performance, which is generally higher than 0.95 in AUC and around 0.9 in F1 and balanced accuracy. The subgroup analysis presents the prior parameter values for monitoring variables including SpO[sub.2], milrinone, non-opioid analgesics and dobutamine. The proposed method can be used to explore variables that are and are not medically related to the baseline variables.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e24101481</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analgesics ; Analysis ; Care and treatment ; Coronaviruses ; COVID-19 ; Decision trees ; Deep learning ; Design ; Forecasting ; Literature reviews ; Machine learning ; Medical centers ; Mortality ; Neural networks ; Parameters ; Patients ; Physiology ; Random variables ; Regression models ; Sepsis ; Subgroups ; Time series</subject><ispartof>Entropy (Basel, Switzerland), 2022-10, Vol.24 (10), p.1481</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601351/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601351/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Nie, Xiaokai</creatorcontrib><title>Status Forecasting Based on the Baseline Information Using Logistic Regresssion</title><title>Entropy (Basel, Switzerland)</title><description>In the status forecasting problem, classification models such as logistic regression with input variables such as physiological, diagnostic, and treatment variables are typical ways of modeling. However, the parameter value and model performance differ among individuals with different baseline information. To cope with these difficulties, a subgroup analysis is conducted, in which models' ANOVA and rpart are proposed to explore the influence of baseline information on the parameters and model performance. The results show that the logistic regression model achieves satisfactory performance, which is generally higher than 0.95 in AUC and around 0.9 in F1 and balanced accuracy. The subgroup analysis presents the prior parameter values for monitoring variables including SpO[sub.2], milrinone, non-opioid analgesics and dobutamine. The proposed method can be used to explore variables that are and are not medically related to the baseline variables.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analgesics</subject><subject>Analysis</subject><subject>Care and treatment</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>Design</subject><subject>Forecasting</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Medical centers</subject><subject>Mortality</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Patients</subject><subject>Physiology</subject><subject>Random variables</subject><subject>Regression models</subject><subject>Sepsis</subject><subject>Subgroups</subject><subject>Time series</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUN9LwzAQDqLgnD74HxR87rw0adO8CHM4HQwG6p5Dml67jLaZTSf43xt14AS5h_vuvh8cR8g1hQljEm4x4RQoz-kJGVGQMuYM4PQIn5ML77cACUtoNiKrl0EPex_NXY9G-8F2dXSvPZaR66Jhg99DYzuMFl3l-lYPNhBr_6VbutoGh4mese7Rex-oS3JW6cbj1aGPyXr-8Dp7iperx8VsuoxrmgKNhUAAlmZlbgLIsxwDFlrIykgotUZuUgpcFpSLXGAJFYPC8MAUImMFY2Ny95O72xctlga7odeN2vW21f2Hctqqv0xnN6p270pmQFlKQ8DNIaB3b3v0g9q6fd-Fm1UikpxnnKb5r6rWDSobXhDCTGu9UVPBUwGSSwiqyT-qUCW21rgOKxv2R4ZPop-BzQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhao, Xin</creator><creator>Nie, Xiaokai</creator><general>MDPI AG</general><general>MDPI</general><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>5PM</scope></search><sort><creationdate>20221001</creationdate><title>Status Forecasting Based on the Baseline Information Using Logistic Regresssion</title><author>Zhao, Xin ; Nie, Xiaokai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1501-77e00356d8ce00868e56d7a79fc90daae4c51049b14787ed0f30bc4daab763b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analgesics</topic><topic>Analysis</topic><topic>Care and treatment</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>Design</topic><topic>Forecasting</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Medical centers</topic><topic>Mortality</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Patients</topic><topic>Physiology</topic><topic>Random variables</topic><topic>Regression models</topic><topic>Sepsis</topic><topic>Subgroups</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Nie, Xiaokai</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xin</au><au>Nie, Xiaokai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Status Forecasting Based on the Baseline Information Using Logistic Regresssion</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>24</volume><issue>10</issue><spage>1481</spage><pages>1481-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>In the status forecasting problem, classification models such as logistic regression with input variables such as physiological, diagnostic, and treatment variables are typical ways of modeling. However, the parameter value and model performance differ among individuals with different baseline information. To cope with these difficulties, a subgroup analysis is conducted, in which models' ANOVA and rpart are proposed to explore the influence of baseline information on the parameters and model performance. The results show that the logistic regression model achieves satisfactory performance, which is generally higher than 0.95 in AUC and around 0.9 in F1 and balanced accuracy. The subgroup analysis presents the prior parameter values for monitoring variables including SpO[sub.2], milrinone, non-opioid analgesics and dobutamine. The proposed method can be used to explore variables that are and are not medically related to the baseline variables.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/e24101481</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2022-10, Vol.24 (10), p.1481
issn 1099-4300
1099-4300
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9601351
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Accuracy
Algorithms
Analgesics
Analysis
Care and treatment
Coronaviruses
COVID-19
Decision trees
Deep learning
Design
Forecasting
Literature reviews
Machine learning
Medical centers
Mortality
Neural networks
Parameters
Patients
Physiology
Random variables
Regression models
Sepsis
Subgroups
Time series
title Status Forecasting Based on the Baseline Information Using Logistic Regresssion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Status%20Forecasting%20Based%20on%20the%20Baseline%20Information%20Using%20Logistic%20Regresssion&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Zhao,%20Xin&rft.date=2022-10-01&rft.volume=24&rft.issue=10&rft.spage=1481&rft.pages=1481-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e24101481&rft_dat=%3Cgale_pubme%3EA745709490%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728464158&rft_id=info:pmid/&rft_galeid=A745709490&rfr_iscdi=true