Status Forecasting Based on the Baseline Information Using Logistic Regresssion
In the status forecasting problem, classification models such as logistic regression with input variables such as physiological, diagnostic, and treatment variables are typical ways of modeling. However, the parameter value and model performance differ among individuals with different baseline infor...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2022-10, Vol.24 (10), p.1481 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1481 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 24 |
creator | Zhao, Xin Nie, Xiaokai |
description | In the status forecasting problem, classification models such as logistic regression with input variables such as physiological, diagnostic, and treatment variables are typical ways of modeling. However, the parameter value and model performance differ among individuals with different baseline information. To cope with these difficulties, a subgroup analysis is conducted, in which models' ANOVA and rpart are proposed to explore the influence of baseline information on the parameters and model performance. The results show that the logistic regression model achieves satisfactory performance, which is generally higher than 0.95 in AUC and around 0.9 in F1 and balanced accuracy. The subgroup analysis presents the prior parameter values for monitoring variables including SpO[sub.2], milrinone, non-opioid analgesics and dobutamine. The proposed method can be used to explore variables that are and are not medically related to the baseline variables. |
doi_str_mv | 10.3390/e24101481 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9601351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745709490</galeid><sourcerecordid>A745709490</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1501-77e00356d8ce00868e56d7a79fc90daae4c51049b14787ed0f30bc4daab763b33</originalsourceid><addsrcrecordid>eNptUN9LwzAQDqLgnD74HxR87rw0adO8CHM4HQwG6p5Dml67jLaZTSf43xt14AS5h_vuvh8cR8g1hQljEm4x4RQoz-kJGVGQMuYM4PQIn5ML77cACUtoNiKrl0EPex_NXY9G-8F2dXSvPZaR66Jhg99DYzuMFl3l-lYPNhBr_6VbutoGh4mese7Rex-oS3JW6cbj1aGPyXr-8Dp7iperx8VsuoxrmgKNhUAAlmZlbgLIsxwDFlrIykgotUZuUgpcFpSLXGAJFYPC8MAUImMFY2Ny95O72xctlga7odeN2vW21f2Hctqqv0xnN6p270pmQFlKQ8DNIaB3b3v0g9q6fd-Fm1UikpxnnKb5r6rWDSobXhDCTGu9UVPBUwGSSwiqyT-qUCW21rgOKxv2R4ZPop-BzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728464158</pqid></control><display><type>article</type><title>Status Forecasting Based on the Baseline Information Using Logistic Regresssion</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhao, Xin ; Nie, Xiaokai</creator><creatorcontrib>Zhao, Xin ; Nie, Xiaokai</creatorcontrib><description>In the status forecasting problem, classification models such as logistic regression with input variables such as physiological, diagnostic, and treatment variables are typical ways of modeling. However, the parameter value and model performance differ among individuals with different baseline information. To cope with these difficulties, a subgroup analysis is conducted, in which models' ANOVA and rpart are proposed to explore the influence of baseline information on the parameters and model performance. The results show that the logistic regression model achieves satisfactory performance, which is generally higher than 0.95 in AUC and around 0.9 in F1 and balanced accuracy. The subgroup analysis presents the prior parameter values for monitoring variables including SpO[sub.2], milrinone, non-opioid analgesics and dobutamine. The proposed method can be used to explore variables that are and are not medically related to the baseline variables.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e24101481</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analgesics ; Analysis ; Care and treatment ; Coronaviruses ; COVID-19 ; Decision trees ; Deep learning ; Design ; Forecasting ; Literature reviews ; Machine learning ; Medical centers ; Mortality ; Neural networks ; Parameters ; Patients ; Physiology ; Random variables ; Regression models ; Sepsis ; Subgroups ; Time series</subject><ispartof>Entropy (Basel, Switzerland), 2022-10, Vol.24 (10), p.1481</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601351/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601351/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Nie, Xiaokai</creatorcontrib><title>Status Forecasting Based on the Baseline Information Using Logistic Regresssion</title><title>Entropy (Basel, Switzerland)</title><description>In the status forecasting problem, classification models such as logistic regression with input variables such as physiological, diagnostic, and treatment variables are typical ways of modeling. However, the parameter value and model performance differ among individuals with different baseline information. To cope with these difficulties, a subgroup analysis is conducted, in which models' ANOVA and rpart are proposed to explore the influence of baseline information on the parameters and model performance. The results show that the logistic regression model achieves satisfactory performance, which is generally higher than 0.95 in AUC and around 0.9 in F1 and balanced accuracy. The subgroup analysis presents the prior parameter values for monitoring variables including SpO[sub.2], milrinone, non-opioid analgesics and dobutamine. The proposed method can be used to explore variables that are and are not medically related to the baseline variables.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analgesics</subject><subject>Analysis</subject><subject>Care and treatment</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>Design</subject><subject>Forecasting</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Medical centers</subject><subject>Mortality</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Patients</subject><subject>Physiology</subject><subject>Random variables</subject><subject>Regression models</subject><subject>Sepsis</subject><subject>Subgroups</subject><subject>Time series</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUN9LwzAQDqLgnD74HxR87rw0adO8CHM4HQwG6p5Dml67jLaZTSf43xt14AS5h_vuvh8cR8g1hQljEm4x4RQoz-kJGVGQMuYM4PQIn5ML77cACUtoNiKrl0EPex_NXY9G-8F2dXSvPZaR66Jhg99DYzuMFl3l-lYPNhBr_6VbutoGh4mese7Rex-oS3JW6cbj1aGPyXr-8Dp7iperx8VsuoxrmgKNhUAAlmZlbgLIsxwDFlrIykgotUZuUgpcFpSLXGAJFYPC8MAUImMFY2Ny95O72xctlga7odeN2vW21f2Hctqqv0xnN6p270pmQFlKQ8DNIaB3b3v0g9q6fd-Fm1UikpxnnKb5r6rWDSobXhDCTGu9UVPBUwGSSwiqyT-qUCW21rgOKxv2R4ZPop-BzQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhao, Xin</creator><creator>Nie, Xiaokai</creator><general>MDPI AG</general><general>MDPI</general><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>5PM</scope></search><sort><creationdate>20221001</creationdate><title>Status Forecasting Based on the Baseline Information Using Logistic Regresssion</title><author>Zhao, Xin ; Nie, Xiaokai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1501-77e00356d8ce00868e56d7a79fc90daae4c51049b14787ed0f30bc4daab763b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analgesics</topic><topic>Analysis</topic><topic>Care and treatment</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>Design</topic><topic>Forecasting</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Medical centers</topic><topic>Mortality</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Patients</topic><topic>Physiology</topic><topic>Random variables</topic><topic>Regression models</topic><topic>Sepsis</topic><topic>Subgroups</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Nie, Xiaokai</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xin</au><au>Nie, Xiaokai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Status Forecasting Based on the Baseline Information Using Logistic Regresssion</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>24</volume><issue>10</issue><spage>1481</spage><pages>1481-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>In the status forecasting problem, classification models such as logistic regression with input variables such as physiological, diagnostic, and treatment variables are typical ways of modeling. However, the parameter value and model performance differ among individuals with different baseline information. To cope with these difficulties, a subgroup analysis is conducted, in which models' ANOVA and rpart are proposed to explore the influence of baseline information on the parameters and model performance. The results show that the logistic regression model achieves satisfactory performance, which is generally higher than 0.95 in AUC and around 0.9 in F1 and balanced accuracy. The subgroup analysis presents the prior parameter values for monitoring variables including SpO[sub.2], milrinone, non-opioid analgesics and dobutamine. The proposed method can be used to explore variables that are and are not medically related to the baseline variables.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/e24101481</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2022-10, Vol.24 (10), p.1481 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9601351 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Accuracy Algorithms Analgesics Analysis Care and treatment Coronaviruses COVID-19 Decision trees Deep learning Design Forecasting Literature reviews Machine learning Medical centers Mortality Neural networks Parameters Patients Physiology Random variables Regression models Sepsis Subgroups Time series |
title | Status Forecasting Based on the Baseline Information Using Logistic Regresssion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Status%20Forecasting%20Based%20on%20the%20Baseline%20Information%20Using%20Logistic%20Regresssion&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Zhao,%20Xin&rft.date=2022-10-01&rft.volume=24&rft.issue=10&rft.spage=1481&rft.pages=1481-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e24101481&rft_dat=%3Cgale_pubme%3EA745709490%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728464158&rft_id=info:pmid/&rft_galeid=A745709490&rfr_iscdi=true |