Analysis of Acupoints Combination for Cancer-Related Anorexia Based on Association Rule Mining
We investigated the acupoint selection regulations and workable core acupoint combinations in cancer-related anorexia (CA) treatment. The Apriori algorithm, complemented by the FP-growth algorithm, was used to mine association rules based on retrieved randomized control trials (RCTs) and clinical co...
Gespeichert in:
Veröffentlicht in: | Evidence-based complementary and alternative medicine 2022-10, Vol.2022, p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Evidence-based complementary and alternative medicine |
container_volume | 2022 |
creator | Tang, Yang Liang, Yanju Wang, Xing Deng, Li |
description | We investigated the acupoint selection regulations and workable core acupoint combinations in cancer-related anorexia (CA) treatment. The Apriori algorithm, complemented by the FP-growth algorithm, was used to mine association rules based on retrieved randomized control trials (RCTs) and clinical control trials (CCTs). We searched the following databases for acupuncture treatment regimens for CA: PubMed, Embase, Cochrane Central, Web of Science, WanFang Data, VIP, China Journal Full-Text Database (CNKI), and SinoMed (CBM). We extracted acupoints prescriptions from the 27 enrolled RCTs and CCTs for analysis. There have been 38 acupoints refined from 27 prescriptions. The pinnacle three regularly chosen acupoints were Zusanli (ST36), Zhongwan (RN12), and Sanyinjiao (SP6). We investigated 10 association rules, and the consequences confirmed that {RN4} ≥ {RN12}, {PC6} ≥ {ST36}, {RN12, SP6} ≥ {RN4}, {HT7} ≥ {RN12}, and {DU20} ≥ {RN12} had been the most frequent associated rules in the adoption literature. Zusanli (ST36), Sanyinjiao (SP6), Guanyuan (RN4), Zhongwan (RN12), Neiguan (PC6), Shenmen (HT7), and Baihui (DU20) would be regarded as acupuncture prescriptions in the treatment of CA. |
doi_str_mv | 10.1155/2022/4251458 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9596268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730158598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-cfc60196145907e5ce707065746054ac6d6911b97808075540c4c82b338de0743</originalsourceid><addsrcrecordid>eNp9kV9LwzAUxYsoOKdvfoCCL4LWJWnSpC9CLf6DiTAUfDJkabpldMlMWnXf3oyOgT74dO_l_u7hcE8UnUJwBSEhIwQQGmFEICZsLxpAimGCEWP7u56-HUZH3i8AQDmldBC9F0Y0a699bOu4kN3KatP6uLTLqTai1dbEtXVxKYxULpmoRrSqigtjnfrWIr4RPowBKry3UvcHk65R8ZM22syOo4NaNF6dbOswer27fSkfkvHz_WNZjBMZ7LaJrGUGYJ4F4zmgikhFAQUZoTgDBAuZVVkO4TSnDDBACcFAYsnQNE1ZpQDF6TC67nVX3XSpKqlM60TDV04vhVtzKzT_vTF6zmf2k-ckz1DGgsD5VsDZj075li-1l6pphFG28xzRFKQQBbcBPfuDLmznwht7ChJG8o3gZU9JZ713qt6ZgYBv0uKbtPg2rYBf9Phcm0p86f_pH-jLkzU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730158598</pqid></control><display><type>article</type><title>Analysis of Acupoints Combination for Cancer-Related Anorexia Based on Association Rule Mining</title><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Tang, Yang ; Liang, Yanju ; Wang, Xing ; Deng, Li</creator><contributor>Tebyaniyan, Hamid ; Hamid Tebyaniyan</contributor><creatorcontrib>Tang, Yang ; Liang, Yanju ; Wang, Xing ; Deng, Li ; Tebyaniyan, Hamid ; Hamid Tebyaniyan</creatorcontrib><description>We investigated the acupoint selection regulations and workable core acupoint combinations in cancer-related anorexia (CA) treatment. The Apriori algorithm, complemented by the FP-growth algorithm, was used to mine association rules based on retrieved randomized control trials (RCTs) and clinical control trials (CCTs). We searched the following databases for acupuncture treatment regimens for CA: PubMed, Embase, Cochrane Central, Web of Science, WanFang Data, VIP, China Journal Full-Text Database (CNKI), and SinoMed (CBM). We extracted acupoints prescriptions from the 27 enrolled RCTs and CCTs for analysis. There have been 38 acupoints refined from 27 prescriptions. The pinnacle three regularly chosen acupoints were Zusanli (ST36), Zhongwan (RN12), and Sanyinjiao (SP6). We investigated 10 association rules, and the consequences confirmed that {RN4} ≥ {RN12}, {PC6} ≥ {ST36}, {RN12, SP6} ≥ {RN4}, {HT7} ≥ {RN12}, and {DU20} ≥ {RN12} had been the most frequent associated rules in the adoption literature. Zusanli (ST36), Sanyinjiao (SP6), Guanyuan (RN4), Zhongwan (RN12), Neiguan (PC6), Shenmen (HT7), and Baihui (DU20) would be regarded as acupuncture prescriptions in the treatment of CA.</description><identifier>ISSN: 1741-427X</identifier><identifier>EISSN: 1741-4288</identifier><identifier>DOI: 10.1155/2022/4251458</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Acupuncture ; Algorithms ; Alzheimer's disease ; Anorexia ; Cancer therapies ; Clinical decision making ; Clinical trials ; Clustering ; Data mining ; Datasets ; Electroacupuncture</subject><ispartof>Evidence-based complementary and alternative medicine, 2022-10, Vol.2022, p.1-10</ispartof><rights>Copyright © 2022 Yang Tang et al.</rights><rights>Copyright © 2022 Yang Tang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Yang Tang et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-cfc60196145907e5ce707065746054ac6d6911b97808075540c4c82b338de0743</citedby><cites>FETCH-LOGICAL-c425t-cfc60196145907e5ce707065746054ac6d6911b97808075540c4c82b338de0743</cites><orcidid>0000-0002-4217-6210 ; 0000-0002-7742-0826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596268/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596268/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids></links><search><contributor>Tebyaniyan, Hamid</contributor><contributor>Hamid Tebyaniyan</contributor><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Liang, Yanju</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Deng, Li</creatorcontrib><title>Analysis of Acupoints Combination for Cancer-Related Anorexia Based on Association Rule Mining</title><title>Evidence-based complementary and alternative medicine</title><description>We investigated the acupoint selection regulations and workable core acupoint combinations in cancer-related anorexia (CA) treatment. The Apriori algorithm, complemented by the FP-growth algorithm, was used to mine association rules based on retrieved randomized control trials (RCTs) and clinical control trials (CCTs). We searched the following databases for acupuncture treatment regimens for CA: PubMed, Embase, Cochrane Central, Web of Science, WanFang Data, VIP, China Journal Full-Text Database (CNKI), and SinoMed (CBM). We extracted acupoints prescriptions from the 27 enrolled RCTs and CCTs for analysis. There have been 38 acupoints refined from 27 prescriptions. The pinnacle three regularly chosen acupoints were Zusanli (ST36), Zhongwan (RN12), and Sanyinjiao (SP6). We investigated 10 association rules, and the consequences confirmed that {RN4} ≥ {RN12}, {PC6} ≥ {ST36}, {RN12, SP6} ≥ {RN4}, {HT7} ≥ {RN12}, and {DU20} ≥ {RN12} had been the most frequent associated rules in the adoption literature. Zusanli (ST36), Sanyinjiao (SP6), Guanyuan (RN4), Zhongwan (RN12), Neiguan (PC6), Shenmen (HT7), and Baihui (DU20) would be regarded as acupuncture prescriptions in the treatment of CA.</description><subject>Acupuncture</subject><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Anorexia</subject><subject>Cancer therapies</subject><subject>Clinical decision making</subject><subject>Clinical trials</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Electroacupuncture</subject><issn>1741-427X</issn><issn>1741-4288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV9LwzAUxYsoOKdvfoCCL4LWJWnSpC9CLf6DiTAUfDJkabpldMlMWnXf3oyOgT74dO_l_u7hcE8UnUJwBSEhIwQQGmFEICZsLxpAimGCEWP7u56-HUZH3i8AQDmldBC9F0Y0a699bOu4kN3KatP6uLTLqTai1dbEtXVxKYxULpmoRrSqigtjnfrWIr4RPowBKry3UvcHk65R8ZM22syOo4NaNF6dbOswer27fSkfkvHz_WNZjBMZ7LaJrGUGYJ4F4zmgikhFAQUZoTgDBAuZVVkO4TSnDDBACcFAYsnQNE1ZpQDF6TC67nVX3XSpKqlM60TDV04vhVtzKzT_vTF6zmf2k-ckz1DGgsD5VsDZj075li-1l6pphFG28xzRFKQQBbcBPfuDLmznwht7ChJG8o3gZU9JZ713qt6ZgYBv0uKbtPg2rYBf9Phcm0p86f_pH-jLkzU</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Tang, Yang</creator><creator>Liang, Yanju</creator><creator>Wang, Xing</creator><creator>Deng, Li</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7T5</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M2M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4217-6210</orcidid><orcidid>https://orcid.org/0000-0002-7742-0826</orcidid></search><sort><creationdate>20221018</creationdate><title>Analysis of Acupoints Combination for Cancer-Related Anorexia Based on Association Rule Mining</title><author>Tang, Yang ; Liang, Yanju ; Wang, Xing ; Deng, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-cfc60196145907e5ce707065746054ac6d6911b97808075540c4c82b338de0743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acupuncture</topic><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Anorexia</topic><topic>Cancer therapies</topic><topic>Clinical decision making</topic><topic>Clinical trials</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Electroacupuncture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Liang, Yanju</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Deng, Li</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Evidence-based complementary and alternative medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yang</au><au>Liang, Yanju</au><au>Wang, Xing</au><au>Deng, Li</au><au>Tebyaniyan, Hamid</au><au>Hamid Tebyaniyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Acupoints Combination for Cancer-Related Anorexia Based on Association Rule Mining</atitle><jtitle>Evidence-based complementary and alternative medicine</jtitle><date>2022-10-18</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1741-427X</issn><eissn>1741-4288</eissn><abstract>We investigated the acupoint selection regulations and workable core acupoint combinations in cancer-related anorexia (CA) treatment. The Apriori algorithm, complemented by the FP-growth algorithm, was used to mine association rules based on retrieved randomized control trials (RCTs) and clinical control trials (CCTs). We searched the following databases for acupuncture treatment regimens for CA: PubMed, Embase, Cochrane Central, Web of Science, WanFang Data, VIP, China Journal Full-Text Database (CNKI), and SinoMed (CBM). We extracted acupoints prescriptions from the 27 enrolled RCTs and CCTs for analysis. There have been 38 acupoints refined from 27 prescriptions. The pinnacle three regularly chosen acupoints were Zusanli (ST36), Zhongwan (RN12), and Sanyinjiao (SP6). We investigated 10 association rules, and the consequences confirmed that {RN4} ≥ {RN12}, {PC6} ≥ {ST36}, {RN12, SP6} ≥ {RN4}, {HT7} ≥ {RN12}, and {DU20} ≥ {RN12} had been the most frequent associated rules in the adoption literature. Zusanli (ST36), Sanyinjiao (SP6), Guanyuan (RN4), Zhongwan (RN12), Neiguan (PC6), Shenmen (HT7), and Baihui (DU20) would be regarded as acupuncture prescriptions in the treatment of CA.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/4251458</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4217-6210</orcidid><orcidid>https://orcid.org/0000-0002-7742-0826</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-427X |
ispartof | Evidence-based complementary and alternative medicine, 2022-10, Vol.2022, p.1-10 |
issn | 1741-427X 1741-4288 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9596268 |
source | PubMed Central Open Access; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Acupuncture Algorithms Alzheimer's disease Anorexia Cancer therapies Clinical decision making Clinical trials Clustering Data mining Datasets Electroacupuncture |
title | Analysis of Acupoints Combination for Cancer-Related Anorexia Based on Association Rule Mining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Acupoints%20Combination%20for%20Cancer-Related%20Anorexia%20Based%20on%20Association%20Rule%20Mining&rft.jtitle=Evidence-based%20complementary%20and%20alternative%20medicine&rft.au=Tang,%20Yang&rft.date=2022-10-18&rft.volume=2022&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1741-427X&rft.eissn=1741-4288&rft_id=info:doi/10.1155/2022/4251458&rft_dat=%3Cproquest_pubme%3E2730158598%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730158598&rft_id=info:pmid/&rfr_iscdi=true |