Stacked dilated convolutions and asymmetric architecture for U-Net-based medical image segmentation
Deep learning has been widely utilized for medical image segmentation. The most commonly used U-Net and its variants often share two common characteristics but lack solid evidence for the effectiveness. First, each block (i.e., consecutive convolutions of feature maps of the same resolution) outputs...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2022-09, Vol.148, p.105891-105891, Article 105891 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105891 |
---|---|
container_issue | |
container_start_page | 105891 |
container_title | Computers in biology and medicine |
container_volume | 148 |
creator | Wang, Shuhang Singh, Vivek Kumar Cheah, Eugene Wang, Xiaohong Li, Qian Chou, Shinn-Huey Lehman, Constance D. Kumar, Viksit Samir, Anthony E. |
description | Deep learning has been widely utilized for medical image segmentation. The most commonly used U-Net and its variants often share two common characteristics but lack solid evidence for the effectiveness. First, each block (i.e., consecutive convolutions of feature maps of the same resolution) outputs feature maps from the last convolution, limiting the variety of the receptive fields. Second, the network has a symmetric structure where the encoder and the decoder paths have similar numbers of channels. We explored two novel revisions: a stacked dilated operation that outputs feature maps from multi-scale receptive fields to replace the consecutive convolutions; an asymmetric architecture with fewer channels in the decoder path. Two novel models were developed: U-Net using the stacked dilated operation (SDU-Net) and asymmetric SDU-Net (ASDU-Net). We used both publicly available and private datasets to assess the efficacy of the proposed models. Extensive experiments confirmed SDU-Net outperformed or achieved performance similar to the state-of-the-art while using fewer parameters (40% of U-Net). ASDU-Net further reduced the model parameters to 20% of U-Net with performance comparable to SDU-Net. In conclusion, the stacked dilated operation and the asymmetric structure are promising for improving the performance of U-Net and its variants.
•Proposed a stacked dilated operation that conducts multiple dilated convolutions.•Developed a novel U-Net variant called stacked dilated U-Net (SDU-Net).•Built an asymmetric SDU-Net, where the decoder has fewer channels than the encoder.•The proposed models used fewer parameters and outperformed the state-of-the-art. |
doi_str_mv | 10.1016/j.compbiomed.2022.105891 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9596264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482522006308</els_id><sourcerecordid>2699707293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-33fd70542499c1b4c34cc64c17ebc797841a832d38fe51ba9f7b0e0a633b6a0f3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EoqXwF1AkLlyyjD8SxxckqPiSKjhAz5YzmWy9JPFiOyv13-PVlvJx4TSS_c4778zDWMVhw4G3r3YbDPO-92GmYSNAiPLcdIY_YOe806aGRqqH7ByAQ6060ZyxJyntAECBhMfsTDZGCi3MOcOv2eF3GqrBTy6XimE5hGnNPiypcstQuXQ7z5Sjx8pFvPGZMK-RqjHE6rr-TLnuXSqNJYpHN1V-dluqEm1nWrI7-jxlj0Y3JXp2Vy_Y9ft33y4_1ldfPny6fHNVYwM611KOg4ZGCWUM8l6hVIitQq6pR210p7jrpBhkN1LDe2dG3QOBa6XsWwejvGCvT777tS9psMyPbrL7WCLFWxuct3__LP7GbsPBmsa0olXF4OWdQQw_VkrZzj4hTZNbKKzJitYYDeVuskhf_CPdhTUuZT0rNKiulSCboupOKowhpUjjfRgO9kjS7uxvkvZI0p5Iltbnfy5z3_gLXRG8PQmonPTgKdqEnhYsGGJBZIfg_z_lJybftns</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704863035</pqid></control><display><type>article</type><title>Stacked dilated convolutions and asymmetric architecture for U-Net-based medical image segmentation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wang, Shuhang ; Singh, Vivek Kumar ; Cheah, Eugene ; Wang, Xiaohong ; Li, Qian ; Chou, Shinn-Huey ; Lehman, Constance D. ; Kumar, Viksit ; Samir, Anthony E.</creator><creatorcontrib>Wang, Shuhang ; Singh, Vivek Kumar ; Cheah, Eugene ; Wang, Xiaohong ; Li, Qian ; Chou, Shinn-Huey ; Lehman, Constance D. ; Kumar, Viksit ; Samir, Anthony E.</creatorcontrib><description>Deep learning has been widely utilized for medical image segmentation. The most commonly used U-Net and its variants often share two common characteristics but lack solid evidence for the effectiveness. First, each block (i.e., consecutive convolutions of feature maps of the same resolution) outputs feature maps from the last convolution, limiting the variety of the receptive fields. Second, the network has a symmetric structure where the encoder and the decoder paths have similar numbers of channels. We explored two novel revisions: a stacked dilated operation that outputs feature maps from multi-scale receptive fields to replace the consecutive convolutions; an asymmetric architecture with fewer channels in the decoder path. Two novel models were developed: U-Net using the stacked dilated operation (SDU-Net) and asymmetric SDU-Net (ASDU-Net). We used both publicly available and private datasets to assess the efficacy of the proposed models. Extensive experiments confirmed SDU-Net outperformed or achieved performance similar to the state-of-the-art while using fewer parameters (40% of U-Net). ASDU-Net further reduced the model parameters to 20% of U-Net with performance comparable to SDU-Net. In conclusion, the stacked dilated operation and the asymmetric structure are promising for improving the performance of U-Net and its variants.
•Proposed a stacked dilated operation that conducts multiple dilated convolutions.•Developed a novel U-Net variant called stacked dilated U-Net (SDU-Net).•Built an asymmetric SDU-Net, where the decoder has fewer channels than the encoder.•The proposed models used fewer parameters and outperformed the state-of-the-art.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2022.105891</identifier><identifier>PMID: 35932729</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Asymmetric ; Asymmetric structures ; Automation ; Biology ; Channels ; Coders ; Deep learning ; Feature maps ; Image processing ; Image Processing, Computer-Assisted ; Image segmentation ; Mathematical models ; Medical image ; Medical imaging ; Neural Networks, Computer ; Parameters ; Segmentation ; Semantics ; Stacked dilated convolutions ; U-Net</subject><ispartof>Computers in biology and medicine, 2022-09, Vol.148, p.105891-105891, Article 105891</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-33fd70542499c1b4c34cc64c17ebc797841a832d38fe51ba9f7b0e0a633b6a0f3</citedby><cites>FETCH-LOGICAL-c507t-33fd70542499c1b4c34cc64c17ebc797841a832d38fe51ba9f7b0e0a633b6a0f3</cites><orcidid>0000-0002-2436-6280 ; 0000-0002-7801-8724 ; 0000-0003-0056-5223 ; 0000-0002-8259-7087 ; 0000-0002-9386-4232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482522006308$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35932729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shuhang</creatorcontrib><creatorcontrib>Singh, Vivek Kumar</creatorcontrib><creatorcontrib>Cheah, Eugene</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Chou, Shinn-Huey</creatorcontrib><creatorcontrib>Lehman, Constance D.</creatorcontrib><creatorcontrib>Kumar, Viksit</creatorcontrib><creatorcontrib>Samir, Anthony E.</creatorcontrib><title>Stacked dilated convolutions and asymmetric architecture for U-Net-based medical image segmentation</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Deep learning has been widely utilized for medical image segmentation. The most commonly used U-Net and its variants often share two common characteristics but lack solid evidence for the effectiveness. First, each block (i.e., consecutive convolutions of feature maps of the same resolution) outputs feature maps from the last convolution, limiting the variety of the receptive fields. Second, the network has a symmetric structure where the encoder and the decoder paths have similar numbers of channels. We explored two novel revisions: a stacked dilated operation that outputs feature maps from multi-scale receptive fields to replace the consecutive convolutions; an asymmetric architecture with fewer channels in the decoder path. Two novel models were developed: U-Net using the stacked dilated operation (SDU-Net) and asymmetric SDU-Net (ASDU-Net). We used both publicly available and private datasets to assess the efficacy of the proposed models. Extensive experiments confirmed SDU-Net outperformed or achieved performance similar to the state-of-the-art while using fewer parameters (40% of U-Net). ASDU-Net further reduced the model parameters to 20% of U-Net with performance comparable to SDU-Net. In conclusion, the stacked dilated operation and the asymmetric structure are promising for improving the performance of U-Net and its variants.
•Proposed a stacked dilated operation that conducts multiple dilated convolutions.•Developed a novel U-Net variant called stacked dilated U-Net (SDU-Net).•Built an asymmetric SDU-Net, where the decoder has fewer channels than the encoder.•The proposed models used fewer parameters and outperformed the state-of-the-art.</description><subject>Asymmetric</subject><subject>Asymmetric structures</subject><subject>Automation</subject><subject>Biology</subject><subject>Channels</subject><subject>Coders</subject><subject>Deep learning</subject><subject>Feature maps</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Mathematical models</subject><subject>Medical image</subject><subject>Medical imaging</subject><subject>Neural Networks, Computer</subject><subject>Parameters</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Stacked dilated convolutions</subject><subject>U-Net</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1v1DAQhi0EoqXwF1AkLlyyjD8SxxckqPiSKjhAz5YzmWy9JPFiOyv13-PVlvJx4TSS_c4778zDWMVhw4G3r3YbDPO-92GmYSNAiPLcdIY_YOe806aGRqqH7ByAQ6060ZyxJyntAECBhMfsTDZGCi3MOcOv2eF3GqrBTy6XimE5hGnNPiypcstQuXQ7z5Sjx8pFvPGZMK-RqjHE6rr-TLnuXSqNJYpHN1V-dluqEm1nWrI7-jxlj0Y3JXp2Vy_Y9ft33y4_1ldfPny6fHNVYwM611KOg4ZGCWUM8l6hVIitQq6pR210p7jrpBhkN1LDe2dG3QOBa6XsWwejvGCvT777tS9psMyPbrL7WCLFWxuct3__LP7GbsPBmsa0olXF4OWdQQw_VkrZzj4hTZNbKKzJitYYDeVuskhf_CPdhTUuZT0rNKiulSCboupOKowhpUjjfRgO9kjS7uxvkvZI0p5Iltbnfy5z3_gLXRG8PQmonPTgKdqEnhYsGGJBZIfg_z_lJybftns</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Wang, Shuhang</creator><creator>Singh, Vivek Kumar</creator><creator>Cheah, Eugene</creator><creator>Wang, Xiaohong</creator><creator>Li, Qian</creator><creator>Chou, Shinn-Huey</creator><creator>Lehman, Constance D.</creator><creator>Kumar, Viksit</creator><creator>Samir, Anthony E.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2436-6280</orcidid><orcidid>https://orcid.org/0000-0002-7801-8724</orcidid><orcidid>https://orcid.org/0000-0003-0056-5223</orcidid><orcidid>https://orcid.org/0000-0002-8259-7087</orcidid><orcidid>https://orcid.org/0000-0002-9386-4232</orcidid></search><sort><creationdate>20220901</creationdate><title>Stacked dilated convolutions and asymmetric architecture for U-Net-based medical image segmentation</title><author>Wang, Shuhang ; Singh, Vivek Kumar ; Cheah, Eugene ; Wang, Xiaohong ; Li, Qian ; Chou, Shinn-Huey ; Lehman, Constance D. ; Kumar, Viksit ; Samir, Anthony E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-33fd70542499c1b4c34cc64c17ebc797841a832d38fe51ba9f7b0e0a633b6a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymmetric</topic><topic>Asymmetric structures</topic><topic>Automation</topic><topic>Biology</topic><topic>Channels</topic><topic>Coders</topic><topic>Deep learning</topic><topic>Feature maps</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Mathematical models</topic><topic>Medical image</topic><topic>Medical imaging</topic><topic>Neural Networks, Computer</topic><topic>Parameters</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Stacked dilated convolutions</topic><topic>U-Net</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuhang</creatorcontrib><creatorcontrib>Singh, Vivek Kumar</creatorcontrib><creatorcontrib>Cheah, Eugene</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Chou, Shinn-Huey</creatorcontrib><creatorcontrib>Lehman, Constance D.</creatorcontrib><creatorcontrib>Kumar, Viksit</creatorcontrib><creatorcontrib>Samir, Anthony E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuhang</au><au>Singh, Vivek Kumar</au><au>Cheah, Eugene</au><au>Wang, Xiaohong</au><au>Li, Qian</au><au>Chou, Shinn-Huey</au><au>Lehman, Constance D.</au><au>Kumar, Viksit</au><au>Samir, Anthony E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stacked dilated convolutions and asymmetric architecture for U-Net-based medical image segmentation</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>148</volume><spage>105891</spage><epage>105891</epage><pages>105891-105891</pages><artnum>105891</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Deep learning has been widely utilized for medical image segmentation. The most commonly used U-Net and its variants often share two common characteristics but lack solid evidence for the effectiveness. First, each block (i.e., consecutive convolutions of feature maps of the same resolution) outputs feature maps from the last convolution, limiting the variety of the receptive fields. Second, the network has a symmetric structure where the encoder and the decoder paths have similar numbers of channels. We explored two novel revisions: a stacked dilated operation that outputs feature maps from multi-scale receptive fields to replace the consecutive convolutions; an asymmetric architecture with fewer channels in the decoder path. Two novel models were developed: U-Net using the stacked dilated operation (SDU-Net) and asymmetric SDU-Net (ASDU-Net). We used both publicly available and private datasets to assess the efficacy of the proposed models. Extensive experiments confirmed SDU-Net outperformed or achieved performance similar to the state-of-the-art while using fewer parameters (40% of U-Net). ASDU-Net further reduced the model parameters to 20% of U-Net with performance comparable to SDU-Net. In conclusion, the stacked dilated operation and the asymmetric structure are promising for improving the performance of U-Net and its variants.
•Proposed a stacked dilated operation that conducts multiple dilated convolutions.•Developed a novel U-Net variant called stacked dilated U-Net (SDU-Net).•Built an asymmetric SDU-Net, where the decoder has fewer channels than the encoder.•The proposed models used fewer parameters and outperformed the state-of-the-art.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>35932729</pmid><doi>10.1016/j.compbiomed.2022.105891</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2436-6280</orcidid><orcidid>https://orcid.org/0000-0002-7801-8724</orcidid><orcidid>https://orcid.org/0000-0003-0056-5223</orcidid><orcidid>https://orcid.org/0000-0002-8259-7087</orcidid><orcidid>https://orcid.org/0000-0002-9386-4232</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2022-09, Vol.148, p.105891-105891, Article 105891 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9596264 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Asymmetric Asymmetric structures Automation Biology Channels Coders Deep learning Feature maps Image processing Image Processing, Computer-Assisted Image segmentation Mathematical models Medical image Medical imaging Neural Networks, Computer Parameters Segmentation Semantics Stacked dilated convolutions U-Net |
title | Stacked dilated convolutions and asymmetric architecture for U-Net-based medical image segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stacked%20dilated%20convolutions%20and%20asymmetric%20architecture%20for%20U-Net-based%20medical%20image%20segmentation&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Wang,%20Shuhang&rft.date=2022-09-01&rft.volume=148&rft.spage=105891&rft.epage=105891&rft.pages=105891-105891&rft.artnum=105891&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2022.105891&rft_dat=%3Cproquest_pubme%3E2699707293%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704863035&rft_id=info:pmid/35932729&rft_els_id=S0010482522006308&rfr_iscdi=true |