Stacked dilated convolutions and asymmetric architecture for U-Net-based medical image segmentation

Deep learning has been widely utilized for medical image segmentation. The most commonly used U-Net and its variants often share two common characteristics but lack solid evidence for the effectiveness. First, each block (i.e., consecutive convolutions of feature maps of the same resolution) outputs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2022-09, Vol.148, p.105891-105891, Article 105891
Hauptverfasser: Wang, Shuhang, Singh, Vivek Kumar, Cheah, Eugene, Wang, Xiaohong, Li, Qian, Chou, Shinn-Huey, Lehman, Constance D., Kumar, Viksit, Samir, Anthony E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105891
container_issue
container_start_page 105891
container_title Computers in biology and medicine
container_volume 148
creator Wang, Shuhang
Singh, Vivek Kumar
Cheah, Eugene
Wang, Xiaohong
Li, Qian
Chou, Shinn-Huey
Lehman, Constance D.
Kumar, Viksit
Samir, Anthony E.
description Deep learning has been widely utilized for medical image segmentation. The most commonly used U-Net and its variants often share two common characteristics but lack solid evidence for the effectiveness. First, each block (i.e., consecutive convolutions of feature maps of the same resolution) outputs feature maps from the last convolution, limiting the variety of the receptive fields. Second, the network has a symmetric structure where the encoder and the decoder paths have similar numbers of channels. We explored two novel revisions: a stacked dilated operation that outputs feature maps from multi-scale receptive fields to replace the consecutive convolutions; an asymmetric architecture with fewer channels in the decoder path. Two novel models were developed: U-Net using the stacked dilated operation (SDU-Net) and asymmetric SDU-Net (ASDU-Net). We used both publicly available and private datasets to assess the efficacy of the proposed models. Extensive experiments confirmed SDU-Net outperformed or achieved performance similar to the state-of-the-art while using fewer parameters (40% of U-Net). ASDU-Net further reduced the model parameters to 20% of U-Net with performance comparable to SDU-Net. In conclusion, the stacked dilated operation and the asymmetric structure are promising for improving the performance of U-Net and its variants. •Proposed a stacked dilated operation that conducts multiple dilated convolutions.•Developed a novel U-Net variant called stacked dilated U-Net (SDU-Net).•Built an asymmetric SDU-Net, where the decoder has fewer channels than the encoder.•The proposed models used fewer parameters and outperformed the state-of-the-art.
doi_str_mv 10.1016/j.compbiomed.2022.105891
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9596264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482522006308</els_id><sourcerecordid>2699707293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-33fd70542499c1b4c34cc64c17ebc797841a832d38fe51ba9f7b0e0a633b6a0f3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EoqXwF1AkLlyyjD8SxxckqPiSKjhAz5YzmWy9JPFiOyv13-PVlvJx4TSS_c4778zDWMVhw4G3r3YbDPO-92GmYSNAiPLcdIY_YOe806aGRqqH7ByAQ6060ZyxJyntAECBhMfsTDZGCi3MOcOv2eF3GqrBTy6XimE5hGnNPiypcstQuXQ7z5Sjx8pFvPGZMK-RqjHE6rr-TLnuXSqNJYpHN1V-dluqEm1nWrI7-jxlj0Y3JXp2Vy_Y9ft33y4_1ldfPny6fHNVYwM611KOg4ZGCWUM8l6hVIitQq6pR210p7jrpBhkN1LDe2dG3QOBa6XsWwejvGCvT777tS9psMyPbrL7WCLFWxuct3__LP7GbsPBmsa0olXF4OWdQQw_VkrZzj4hTZNbKKzJitYYDeVuskhf_CPdhTUuZT0rNKiulSCboupOKowhpUjjfRgO9kjS7uxvkvZI0p5Iltbnfy5z3_gLXRG8PQmonPTgKdqEnhYsGGJBZIfg_z_lJybftns</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704863035</pqid></control><display><type>article</type><title>Stacked dilated convolutions and asymmetric architecture for U-Net-based medical image segmentation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wang, Shuhang ; Singh, Vivek Kumar ; Cheah, Eugene ; Wang, Xiaohong ; Li, Qian ; Chou, Shinn-Huey ; Lehman, Constance D. ; Kumar, Viksit ; Samir, Anthony E.</creator><creatorcontrib>Wang, Shuhang ; Singh, Vivek Kumar ; Cheah, Eugene ; Wang, Xiaohong ; Li, Qian ; Chou, Shinn-Huey ; Lehman, Constance D. ; Kumar, Viksit ; Samir, Anthony E.</creatorcontrib><description>Deep learning has been widely utilized for medical image segmentation. The most commonly used U-Net and its variants often share two common characteristics but lack solid evidence for the effectiveness. First, each block (i.e., consecutive convolutions of feature maps of the same resolution) outputs feature maps from the last convolution, limiting the variety of the receptive fields. Second, the network has a symmetric structure where the encoder and the decoder paths have similar numbers of channels. We explored two novel revisions: a stacked dilated operation that outputs feature maps from multi-scale receptive fields to replace the consecutive convolutions; an asymmetric architecture with fewer channels in the decoder path. Two novel models were developed: U-Net using the stacked dilated operation (SDU-Net) and asymmetric SDU-Net (ASDU-Net). We used both publicly available and private datasets to assess the efficacy of the proposed models. Extensive experiments confirmed SDU-Net outperformed or achieved performance similar to the state-of-the-art while using fewer parameters (40% of U-Net). ASDU-Net further reduced the model parameters to 20% of U-Net with performance comparable to SDU-Net. In conclusion, the stacked dilated operation and the asymmetric structure are promising for improving the performance of U-Net and its variants. •Proposed a stacked dilated operation that conducts multiple dilated convolutions.•Developed a novel U-Net variant called stacked dilated U-Net (SDU-Net).•Built an asymmetric SDU-Net, where the decoder has fewer channels than the encoder.•The proposed models used fewer parameters and outperformed the state-of-the-art.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2022.105891</identifier><identifier>PMID: 35932729</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Asymmetric ; Asymmetric structures ; Automation ; Biology ; Channels ; Coders ; Deep learning ; Feature maps ; Image processing ; Image Processing, Computer-Assisted ; Image segmentation ; Mathematical models ; Medical image ; Medical imaging ; Neural Networks, Computer ; Parameters ; Segmentation ; Semantics ; Stacked dilated convolutions ; U-Net</subject><ispartof>Computers in biology and medicine, 2022-09, Vol.148, p.105891-105891, Article 105891</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-33fd70542499c1b4c34cc64c17ebc797841a832d38fe51ba9f7b0e0a633b6a0f3</citedby><cites>FETCH-LOGICAL-c507t-33fd70542499c1b4c34cc64c17ebc797841a832d38fe51ba9f7b0e0a633b6a0f3</cites><orcidid>0000-0002-2436-6280 ; 0000-0002-7801-8724 ; 0000-0003-0056-5223 ; 0000-0002-8259-7087 ; 0000-0002-9386-4232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482522006308$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35932729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shuhang</creatorcontrib><creatorcontrib>Singh, Vivek Kumar</creatorcontrib><creatorcontrib>Cheah, Eugene</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Chou, Shinn-Huey</creatorcontrib><creatorcontrib>Lehman, Constance D.</creatorcontrib><creatorcontrib>Kumar, Viksit</creatorcontrib><creatorcontrib>Samir, Anthony E.</creatorcontrib><title>Stacked dilated convolutions and asymmetric architecture for U-Net-based medical image segmentation</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Deep learning has been widely utilized for medical image segmentation. The most commonly used U-Net and its variants often share two common characteristics but lack solid evidence for the effectiveness. First, each block (i.e., consecutive convolutions of feature maps of the same resolution) outputs feature maps from the last convolution, limiting the variety of the receptive fields. Second, the network has a symmetric structure where the encoder and the decoder paths have similar numbers of channels. We explored two novel revisions: a stacked dilated operation that outputs feature maps from multi-scale receptive fields to replace the consecutive convolutions; an asymmetric architecture with fewer channels in the decoder path. Two novel models were developed: U-Net using the stacked dilated operation (SDU-Net) and asymmetric SDU-Net (ASDU-Net). We used both publicly available and private datasets to assess the efficacy of the proposed models. Extensive experiments confirmed SDU-Net outperformed or achieved performance similar to the state-of-the-art while using fewer parameters (40% of U-Net). ASDU-Net further reduced the model parameters to 20% of U-Net with performance comparable to SDU-Net. In conclusion, the stacked dilated operation and the asymmetric structure are promising for improving the performance of U-Net and its variants. •Proposed a stacked dilated operation that conducts multiple dilated convolutions.•Developed a novel U-Net variant called stacked dilated U-Net (SDU-Net).•Built an asymmetric SDU-Net, where the decoder has fewer channels than the encoder.•The proposed models used fewer parameters and outperformed the state-of-the-art.</description><subject>Asymmetric</subject><subject>Asymmetric structures</subject><subject>Automation</subject><subject>Biology</subject><subject>Channels</subject><subject>Coders</subject><subject>Deep learning</subject><subject>Feature maps</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Mathematical models</subject><subject>Medical image</subject><subject>Medical imaging</subject><subject>Neural Networks, Computer</subject><subject>Parameters</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Stacked dilated convolutions</subject><subject>U-Net</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1v1DAQhi0EoqXwF1AkLlyyjD8SxxckqPiSKjhAz5YzmWy9JPFiOyv13-PVlvJx4TSS_c4778zDWMVhw4G3r3YbDPO-92GmYSNAiPLcdIY_YOe806aGRqqH7ByAQ6060ZyxJyntAECBhMfsTDZGCi3MOcOv2eF3GqrBTy6XimE5hGnNPiypcstQuXQ7z5Sjx8pFvPGZMK-RqjHE6rr-TLnuXSqNJYpHN1V-dluqEm1nWrI7-jxlj0Y3JXp2Vy_Y9ft33y4_1ldfPny6fHNVYwM611KOg4ZGCWUM8l6hVIitQq6pR210p7jrpBhkN1LDe2dG3QOBa6XsWwejvGCvT777tS9psMyPbrL7WCLFWxuct3__LP7GbsPBmsa0olXF4OWdQQw_VkrZzj4hTZNbKKzJitYYDeVuskhf_CPdhTUuZT0rNKiulSCboupOKowhpUjjfRgO9kjS7uxvkvZI0p5Iltbnfy5z3_gLXRG8PQmonPTgKdqEnhYsGGJBZIfg_z_lJybftns</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Wang, Shuhang</creator><creator>Singh, Vivek Kumar</creator><creator>Cheah, Eugene</creator><creator>Wang, Xiaohong</creator><creator>Li, Qian</creator><creator>Chou, Shinn-Huey</creator><creator>Lehman, Constance D.</creator><creator>Kumar, Viksit</creator><creator>Samir, Anthony E.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2436-6280</orcidid><orcidid>https://orcid.org/0000-0002-7801-8724</orcidid><orcidid>https://orcid.org/0000-0003-0056-5223</orcidid><orcidid>https://orcid.org/0000-0002-8259-7087</orcidid><orcidid>https://orcid.org/0000-0002-9386-4232</orcidid></search><sort><creationdate>20220901</creationdate><title>Stacked dilated convolutions and asymmetric architecture for U-Net-based medical image segmentation</title><author>Wang, Shuhang ; Singh, Vivek Kumar ; Cheah, Eugene ; Wang, Xiaohong ; Li, Qian ; Chou, Shinn-Huey ; Lehman, Constance D. ; Kumar, Viksit ; Samir, Anthony E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-33fd70542499c1b4c34cc64c17ebc797841a832d38fe51ba9f7b0e0a633b6a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymmetric</topic><topic>Asymmetric structures</topic><topic>Automation</topic><topic>Biology</topic><topic>Channels</topic><topic>Coders</topic><topic>Deep learning</topic><topic>Feature maps</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Mathematical models</topic><topic>Medical image</topic><topic>Medical imaging</topic><topic>Neural Networks, Computer</topic><topic>Parameters</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Stacked dilated convolutions</topic><topic>U-Net</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuhang</creatorcontrib><creatorcontrib>Singh, Vivek Kumar</creatorcontrib><creatorcontrib>Cheah, Eugene</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Chou, Shinn-Huey</creatorcontrib><creatorcontrib>Lehman, Constance D.</creatorcontrib><creatorcontrib>Kumar, Viksit</creatorcontrib><creatorcontrib>Samir, Anthony E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuhang</au><au>Singh, Vivek Kumar</au><au>Cheah, Eugene</au><au>Wang, Xiaohong</au><au>Li, Qian</au><au>Chou, Shinn-Huey</au><au>Lehman, Constance D.</au><au>Kumar, Viksit</au><au>Samir, Anthony E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stacked dilated convolutions and asymmetric architecture for U-Net-based medical image segmentation</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>148</volume><spage>105891</spage><epage>105891</epage><pages>105891-105891</pages><artnum>105891</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Deep learning has been widely utilized for medical image segmentation. The most commonly used U-Net and its variants often share two common characteristics but lack solid evidence for the effectiveness. First, each block (i.e., consecutive convolutions of feature maps of the same resolution) outputs feature maps from the last convolution, limiting the variety of the receptive fields. Second, the network has a symmetric structure where the encoder and the decoder paths have similar numbers of channels. We explored two novel revisions: a stacked dilated operation that outputs feature maps from multi-scale receptive fields to replace the consecutive convolutions; an asymmetric architecture with fewer channels in the decoder path. Two novel models were developed: U-Net using the stacked dilated operation (SDU-Net) and asymmetric SDU-Net (ASDU-Net). We used both publicly available and private datasets to assess the efficacy of the proposed models. Extensive experiments confirmed SDU-Net outperformed or achieved performance similar to the state-of-the-art while using fewer parameters (40% of U-Net). ASDU-Net further reduced the model parameters to 20% of U-Net with performance comparable to SDU-Net. In conclusion, the stacked dilated operation and the asymmetric structure are promising for improving the performance of U-Net and its variants. •Proposed a stacked dilated operation that conducts multiple dilated convolutions.•Developed a novel U-Net variant called stacked dilated U-Net (SDU-Net).•Built an asymmetric SDU-Net, where the decoder has fewer channels than the encoder.•The proposed models used fewer parameters and outperformed the state-of-the-art.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>35932729</pmid><doi>10.1016/j.compbiomed.2022.105891</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2436-6280</orcidid><orcidid>https://orcid.org/0000-0002-7801-8724</orcidid><orcidid>https://orcid.org/0000-0003-0056-5223</orcidid><orcidid>https://orcid.org/0000-0002-8259-7087</orcidid><orcidid>https://orcid.org/0000-0002-9386-4232</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2022-09, Vol.148, p.105891-105891, Article 105891
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9596264
source MEDLINE; Elsevier ScienceDirect Journals
subjects Asymmetric
Asymmetric structures
Automation
Biology
Channels
Coders
Deep learning
Feature maps
Image processing
Image Processing, Computer-Assisted
Image segmentation
Mathematical models
Medical image
Medical imaging
Neural Networks, Computer
Parameters
Segmentation
Semantics
Stacked dilated convolutions
U-Net
title Stacked dilated convolutions and asymmetric architecture for U-Net-based medical image segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stacked%20dilated%20convolutions%20and%20asymmetric%20architecture%20for%20U-Net-based%20medical%20image%20segmentation&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Wang,%20Shuhang&rft.date=2022-09-01&rft.volume=148&rft.spage=105891&rft.epage=105891&rft.pages=105891-105891&rft.artnum=105891&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2022.105891&rft_dat=%3Cproquest_pubme%3E2699707293%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704863035&rft_id=info:pmid/35932729&rft_els_id=S0010482522006308&rfr_iscdi=true