Spatial patterns of climate change across the Paleocene—Eocene Thermal Maximum

The Paleocene—Eocene Thermal Maximum (PETM; 56 Ma) is one of our best geological analogs for understanding climate dynamics in a “greenhouse” world. However, proxy data representing the event are only available from select marine and terrestrial sedimentary sequences that are unevenly distributed ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-10, Vol.119 (42), p.1-7
Hauptverfasser: Tierney, Jessica E., Zhu, Jiang, Li, Mingsong, Ridgwell, Andy, Hakim, Gregory J., Poulsen, Christopher J., Whiteford, Ross D. M., Rae, James W. B., Kump, Lee R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 42
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Tierney, Jessica E.
Zhu, Jiang
Li, Mingsong
Ridgwell, Andy
Hakim, Gregory J.
Poulsen, Christopher J.
Whiteford, Ross D. M.
Rae, James W. B.
Kump, Lee R.
description The Paleocene—Eocene Thermal Maximum (PETM; 56 Ma) is one of our best geological analogs for understanding climate dynamics in a “greenhouse” world. However, proxy data representing the event are only available from select marine and terrestrial sedimentary sequences that are unevenly distributed across Earth’s surface, limiting our view of the spatial patterns of climate change. Here, we use paleoclimate data assimilation (DA) to combine climate model and proxy information and create a spatially complete reconstruction of the PETM and the climate state that precedes it (“PETM-DA”). Our data-constrained results support strong polar amplification, which in the absence of an extensive cryosphere, is related to temperature feedbacks and loss of seasonal snow on land. The response of the hydrological cycle to PETM warming consists of a narrowing of the Intertropical Convergence Zone, off-equatorial drying, and an intensification of seasonal monsoons and winter storm tracks. Many of these features are also seen in simulations of future climate change under increasing anthropogenic emissions. Since the PETM-DA yields a spatially complete estimate of surface air temperature, it yields a rigorous estimate of global mean temperature change (5.6 ◦C; 5.4 ◦C to 5.9 ◦C, 95% CI) that can be used to calculate equilibrium climate sensitivity (ECS). We find that PETM ECS was 6.5 ◦C (5.7 ◦C to 7.4 ◦C, 95% CI), which is much higher than the present-day range. This supports the view that climate sensitivity increases substantially when greenhouse gas concentrations are high.
doi_str_mv 10.1073/pnas.2205326119
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9586325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27211494</jstor_id><sourcerecordid>27211494</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-eb6eef7e742958d31ef69268924dd629d01bf994cfe4def42278e53cabe87c763</originalsourceid><addsrcrecordid>eNpVkc1KxDAUhYMoOo6uXSkF19XkNk2ajSDD-AMjCuo6pO2t7dCfMWlFdz6ET-iTGB0ddXUD98s5h3sI2WP0iFEZHS9a444AaByBYEytkRGjioWCK7pORpSCDBMOfItsOzenlKo4oZtkKxLAYi5hRG5uF6avTB340aNtXdAVQVZXjekxyErTPmBgMts5F_QlBjemxi7DFt9f36Zfj-CuRNt4gSvzXDVDs0M2ClM73P2eY3J_Nr2bXISz6_PLyeksNFyIPsRUIBYSJQefKY8YFkKBSBTwPBegcsrSQimeFchzLDiATDCOMpNiIjMpojE5WeouhrTB3Efpran1wvro9kV3ptL_N21V6ofuSXs7EUHsBQ6_BWz3OKDr9bwbbOsza5AgaCxFAp46XlJfN7BYrBwY1Z8V6M8K9G8F_sfB32Ar_ufmHthfAnPXd3a196aMccWjD1mbjoU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726057682</pqid></control><display><type>article</type><title>Spatial patterns of climate change across the Paleocene—Eocene Thermal Maximum</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tierney, Jessica E. ; Zhu, Jiang ; Li, Mingsong ; Ridgwell, Andy ; Hakim, Gregory J. ; Poulsen, Christopher J. ; Whiteford, Ross D. M. ; Rae, James W. B. ; Kump, Lee R.</creator><creatorcontrib>Tierney, Jessica E. ; Zhu, Jiang ; Li, Mingsong ; Ridgwell, Andy ; Hakim, Gregory J. ; Poulsen, Christopher J. ; Whiteford, Ross D. M. ; Rae, James W. B. ; Kump, Lee R.</creatorcontrib><description>The Paleocene—Eocene Thermal Maximum (PETM; 56 Ma) is one of our best geological analogs for understanding climate dynamics in a “greenhouse” world. However, proxy data representing the event are only available from select marine and terrestrial sedimentary sequences that are unevenly distributed across Earth’s surface, limiting our view of the spatial patterns of climate change. Here, we use paleoclimate data assimilation (DA) to combine climate model and proxy information and create a spatially complete reconstruction of the PETM and the climate state that precedes it (“PETM-DA”). Our data-constrained results support strong polar amplification, which in the absence of an extensive cryosphere, is related to temperature feedbacks and loss of seasonal snow on land. The response of the hydrological cycle to PETM warming consists of a narrowing of the Intertropical Convergence Zone, off-equatorial drying, and an intensification of seasonal monsoons and winter storm tracks. Many of these features are also seen in simulations of future climate change under increasing anthropogenic emissions. Since the PETM-DA yields a spatially complete estimate of surface air temperature, it yields a rigorous estimate of global mean temperature change (5.6 ◦C; 5.4 ◦C to 5.9 ◦C, 95% CI) that can be used to calculate equilibrium climate sensitivity (ECS). We find that PETM ECS was 6.5 ◦C (5.7 ◦C to 7.4 ◦C, 95% CI), which is much higher than the present-day range. This supports the view that climate sensitivity increases substantially when greenhouse gas concentrations are high.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2205326119</identifier><identifier>PMID: 36215472</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Air temperature ; Anthropogenic factors ; Climate Change ; Climate models ; Cryosphere ; Data collection ; Drying ; Earth surface ; Emissions ; Eocene ; Greenhouse effect ; Greenhouse Gases ; Hydrologic cycle ; Hydrology ; Intertropical convergence zone ; Paleocene ; Paleoclimate ; Physical Sciences ; Sensitivity ; Temperature ; Winter storms</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-10, Vol.119 (42), p.1-7</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Oct 18, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-eb6eef7e742958d31ef69268924dd629d01bf994cfe4def42278e53cabe87c763</citedby><cites>FETCH-LOGICAL-a466t-eb6eef7e742958d31ef69268924dd629d01bf994cfe4def42278e53cabe87c763</cites><orcidid>0000-0002-9080-9289 ; 0000-0002-5542-8106 ; 0000-0003-2333-0128 ; 0000-0003-3904-2526 ; 0000-0001-5104-4271 ; 0000-0001-8486-9739 ; 0000-0002-2178-3476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586325/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586325/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36215472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tierney, Jessica E.</creatorcontrib><creatorcontrib>Zhu, Jiang</creatorcontrib><creatorcontrib>Li, Mingsong</creatorcontrib><creatorcontrib>Ridgwell, Andy</creatorcontrib><creatorcontrib>Hakim, Gregory J.</creatorcontrib><creatorcontrib>Poulsen, Christopher J.</creatorcontrib><creatorcontrib>Whiteford, Ross D. M.</creatorcontrib><creatorcontrib>Rae, James W. B.</creatorcontrib><creatorcontrib>Kump, Lee R.</creatorcontrib><title>Spatial patterns of climate change across the Paleocene—Eocene Thermal Maximum</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The Paleocene—Eocene Thermal Maximum (PETM; 56 Ma) is one of our best geological analogs for understanding climate dynamics in a “greenhouse” world. However, proxy data representing the event are only available from select marine and terrestrial sedimentary sequences that are unevenly distributed across Earth’s surface, limiting our view of the spatial patterns of climate change. Here, we use paleoclimate data assimilation (DA) to combine climate model and proxy information and create a spatially complete reconstruction of the PETM and the climate state that precedes it (“PETM-DA”). Our data-constrained results support strong polar amplification, which in the absence of an extensive cryosphere, is related to temperature feedbacks and loss of seasonal snow on land. The response of the hydrological cycle to PETM warming consists of a narrowing of the Intertropical Convergence Zone, off-equatorial drying, and an intensification of seasonal monsoons and winter storm tracks. Many of these features are also seen in simulations of future climate change under increasing anthropogenic emissions. Since the PETM-DA yields a spatially complete estimate of surface air temperature, it yields a rigorous estimate of global mean temperature change (5.6 ◦C; 5.4 ◦C to 5.9 ◦C, 95% CI) that can be used to calculate equilibrium climate sensitivity (ECS). We find that PETM ECS was 6.5 ◦C (5.7 ◦C to 7.4 ◦C, 95% CI), which is much higher than the present-day range. This supports the view that climate sensitivity increases substantially when greenhouse gas concentrations are high.</description><subject>Air temperature</subject><subject>Anthropogenic factors</subject><subject>Climate Change</subject><subject>Climate models</subject><subject>Cryosphere</subject><subject>Data collection</subject><subject>Drying</subject><subject>Earth surface</subject><subject>Emissions</subject><subject>Eocene</subject><subject>Greenhouse effect</subject><subject>Greenhouse Gases</subject><subject>Hydrologic cycle</subject><subject>Hydrology</subject><subject>Intertropical convergence zone</subject><subject>Paleocene</subject><subject>Paleoclimate</subject><subject>Physical Sciences</subject><subject>Sensitivity</subject><subject>Temperature</subject><subject>Winter storms</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1KxDAUhYMoOo6uXSkF19XkNk2ajSDD-AMjCuo6pO2t7dCfMWlFdz6ET-iTGB0ddXUD98s5h3sI2WP0iFEZHS9a444AaByBYEytkRGjioWCK7pORpSCDBMOfItsOzenlKo4oZtkKxLAYi5hRG5uF6avTB340aNtXdAVQVZXjekxyErTPmBgMts5F_QlBjemxi7DFt9f36Zfj-CuRNt4gSvzXDVDs0M2ClM73P2eY3J_Nr2bXISz6_PLyeksNFyIPsRUIBYSJQefKY8YFkKBSBTwPBegcsrSQimeFchzLDiATDCOMpNiIjMpojE5WeouhrTB3Efpran1wvro9kV3ptL_N21V6ofuSXs7EUHsBQ6_BWz3OKDr9bwbbOsza5AgaCxFAp46XlJfN7BYrBwY1Z8V6M8K9G8F_sfB32Ar_ufmHthfAnPXd3a196aMccWjD1mbjoU</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Tierney, Jessica E.</creator><creator>Zhu, Jiang</creator><creator>Li, Mingsong</creator><creator>Ridgwell, Andy</creator><creator>Hakim, Gregory J.</creator><creator>Poulsen, Christopher J.</creator><creator>Whiteford, Ross D. M.</creator><creator>Rae, James W. B.</creator><creator>Kump, Lee R.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9080-9289</orcidid><orcidid>https://orcid.org/0000-0002-5542-8106</orcidid><orcidid>https://orcid.org/0000-0003-2333-0128</orcidid><orcidid>https://orcid.org/0000-0003-3904-2526</orcidid><orcidid>https://orcid.org/0000-0001-5104-4271</orcidid><orcidid>https://orcid.org/0000-0001-8486-9739</orcidid><orcidid>https://orcid.org/0000-0002-2178-3476</orcidid></search><sort><creationdate>20221018</creationdate><title>Spatial patterns of climate change across the Paleocene—Eocene Thermal Maximum</title><author>Tierney, Jessica E. ; Zhu, Jiang ; Li, Mingsong ; Ridgwell, Andy ; Hakim, Gregory J. ; Poulsen, Christopher J. ; Whiteford, Ross D. M. ; Rae, James W. B. ; Kump, Lee R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-eb6eef7e742958d31ef69268924dd629d01bf994cfe4def42278e53cabe87c763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air temperature</topic><topic>Anthropogenic factors</topic><topic>Climate Change</topic><topic>Climate models</topic><topic>Cryosphere</topic><topic>Data collection</topic><topic>Drying</topic><topic>Earth surface</topic><topic>Emissions</topic><topic>Eocene</topic><topic>Greenhouse effect</topic><topic>Greenhouse Gases</topic><topic>Hydrologic cycle</topic><topic>Hydrology</topic><topic>Intertropical convergence zone</topic><topic>Paleocene</topic><topic>Paleoclimate</topic><topic>Physical Sciences</topic><topic>Sensitivity</topic><topic>Temperature</topic><topic>Winter storms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tierney, Jessica E.</creatorcontrib><creatorcontrib>Zhu, Jiang</creatorcontrib><creatorcontrib>Li, Mingsong</creatorcontrib><creatorcontrib>Ridgwell, Andy</creatorcontrib><creatorcontrib>Hakim, Gregory J.</creatorcontrib><creatorcontrib>Poulsen, Christopher J.</creatorcontrib><creatorcontrib>Whiteford, Ross D. M.</creatorcontrib><creatorcontrib>Rae, James W. B.</creatorcontrib><creatorcontrib>Kump, Lee R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tierney, Jessica E.</au><au>Zhu, Jiang</au><au>Li, Mingsong</au><au>Ridgwell, Andy</au><au>Hakim, Gregory J.</au><au>Poulsen, Christopher J.</au><au>Whiteford, Ross D. M.</au><au>Rae, James W. B.</au><au>Kump, Lee R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial patterns of climate change across the Paleocene—Eocene Thermal Maximum</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-10-18</date><risdate>2022</risdate><volume>119</volume><issue>42</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The Paleocene—Eocene Thermal Maximum (PETM; 56 Ma) is one of our best geological analogs for understanding climate dynamics in a “greenhouse” world. However, proxy data representing the event are only available from select marine and terrestrial sedimentary sequences that are unevenly distributed across Earth’s surface, limiting our view of the spatial patterns of climate change. Here, we use paleoclimate data assimilation (DA) to combine climate model and proxy information and create a spatially complete reconstruction of the PETM and the climate state that precedes it (“PETM-DA”). Our data-constrained results support strong polar amplification, which in the absence of an extensive cryosphere, is related to temperature feedbacks and loss of seasonal snow on land. The response of the hydrological cycle to PETM warming consists of a narrowing of the Intertropical Convergence Zone, off-equatorial drying, and an intensification of seasonal monsoons and winter storm tracks. Many of these features are also seen in simulations of future climate change under increasing anthropogenic emissions. Since the PETM-DA yields a spatially complete estimate of surface air temperature, it yields a rigorous estimate of global mean temperature change (5.6 ◦C; 5.4 ◦C to 5.9 ◦C, 95% CI) that can be used to calculate equilibrium climate sensitivity (ECS). We find that PETM ECS was 6.5 ◦C (5.7 ◦C to 7.4 ◦C, 95% CI), which is much higher than the present-day range. This supports the view that climate sensitivity increases substantially when greenhouse gas concentrations are high.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36215472</pmid><doi>10.1073/pnas.2205326119</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9080-9289</orcidid><orcidid>https://orcid.org/0000-0002-5542-8106</orcidid><orcidid>https://orcid.org/0000-0003-2333-0128</orcidid><orcidid>https://orcid.org/0000-0003-3904-2526</orcidid><orcidid>https://orcid.org/0000-0001-5104-4271</orcidid><orcidid>https://orcid.org/0000-0001-8486-9739</orcidid><orcidid>https://orcid.org/0000-0002-2178-3476</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-10, Vol.119 (42), p.1-7
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9586325
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Air temperature
Anthropogenic factors
Climate Change
Climate models
Cryosphere
Data collection
Drying
Earth surface
Emissions
Eocene
Greenhouse effect
Greenhouse Gases
Hydrologic cycle
Hydrology
Intertropical convergence zone
Paleocene
Paleoclimate
Physical Sciences
Sensitivity
Temperature
Winter storms
title Spatial patterns of climate change across the Paleocene—Eocene Thermal Maximum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20patterns%20of%20climate%20change%20across%20the%20Paleocene%E2%80%94Eocene%20Thermal%20Maximum&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tierney,%20Jessica%20E.&rft.date=2022-10-18&rft.volume=119&rft.issue=42&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2205326119&rft_dat=%3Cjstor_pubme%3E27211494%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726057682&rft_id=info:pmid/36215472&rft_jstor_id=27211494&rfr_iscdi=true