Active entanglement enables stochastic, topological grasping
Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here, we circumvent the need for feedback or precise planning by using an array of fluidically actuated slender hollow elastomeric filament...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-10, Vol.119 (42), p.e2209819119-e2209819119 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2209819119 |
---|---|
container_issue | 42 |
container_start_page | e2209819119 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Becker, Kaitlyn Teeple, Clark Charles, Nicholas Jung, Yeonsu Baum, Daniel Weaver, James C Mahadevan, L Wood, Robert |
description | Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here, we circumvent the need for feedback or precise planning by using an array of fluidically actuated slender hollow elastomeric filaments to actively entangle with objects that vary in geometric and topological complexity. The resulting stochastic interactions enable a unique soft and conformable grasping strategy across a range of target objects that vary in size, weight, and shape. We experimentally evaluate the grasping performance of our strategy and use a computational framework for the collective mechanics of flexible filaments in contact with complex objects to explain our findings. Overall, our study highlights how active collective entanglement of a filament array via an uncontrolled, spatially distributed scheme provides options for soft, adaptable grasping. |
doi_str_mv | 10.1073/pnas.2209819119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9586297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726060218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-3407908c5b6643dbed354b6c4e18cd42a2b537b5671518581e7d34810b1caf053</originalsourceid><addsrcrecordid>eNpdkctLw0AQxhdRtD7O3qTgxYPRmX0HRCjFFwhe9LxsNts0Jc3GbFrwv3eLb08zw_zmYz4-Qo4RLhAUu-xaGy8ohVxjjphvkRFCjpnkOWyTEQBVmeaU75H9GBcAkAsNu2SPSYqCSzkiVxM31Gs_9u1g26rxy9SkwRaNj-M4BDe3cajd-XgIXWhCVTvbjKvexq5uq0OyM7NN9Eef9YC83N48T--zx6e7h-nkMXNcqyFjHFQO2olCSs7KwpdM8EI67lG7klNLC8FUIaRCgVpo9KpkXCMU6OwMBDsg1x-63apY-tKlH3vbmK6vl7Z_M8HW5u-mreemCmuT7EqaqyRw9inQh9eVj4NZ1tH5prGtD6toqKJMIxcoE3r6D12EVd8mextKggSKOlGXH5TrQ4y9n30_g2A2yZhNMuYnmXRx8tvDN_8VBXsHlBOJ1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726060218</pqid></control><display><type>article</type><title>Active entanglement enables stochastic, topological grasping</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Becker, Kaitlyn ; Teeple, Clark ; Charles, Nicholas ; Jung, Yeonsu ; Baum, Daniel ; Weaver, James C ; Mahadevan, L ; Wood, Robert</creator><creatorcontrib>Becker, Kaitlyn ; Teeple, Clark ; Charles, Nicholas ; Jung, Yeonsu ; Baum, Daniel ; Weaver, James C ; Mahadevan, L ; Wood, Robert</creatorcontrib><description>Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here, we circumvent the need for feedback or precise planning by using an array of fluidically actuated slender hollow elastomeric filaments to actively entangle with objects that vary in geometric and topological complexity. The resulting stochastic interactions enable a unique soft and conformable grasping strategy across a range of target objects that vary in size, weight, and shape. We experimentally evaluate the grasping performance of our strategy and use a computational framework for the collective mechanics of flexible filaments in contact with complex objects to explain our findings. Overall, our study highlights how active collective entanglement of a filament array via an uncontrolled, spatially distributed scheme provides options for soft, adaptable grasping.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2209819119</identifier><identifier>PMID: 36215466</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Arrays ; Complexity ; Computer applications ; Elastomers ; Entanglement ; Filaments ; Grasping ; Hand Strength ; Mathematical morphology ; Motion detection ; Motion planning ; Physical Sciences ; Robotics - methods ; Stochasticity ; Strategy ; Topology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-10, Vol.119 (42), p.e2209819119-e2209819119</ispartof><rights>Copyright National Academy of Sciences Oct 18, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-3407908c5b6643dbed354b6c4e18cd42a2b537b5671518581e7d34810b1caf053</citedby><cites>FETCH-LOGICAL-c487t-3407908c5b6643dbed354b6c4e18cd42a2b537b5671518581e7d34810b1caf053</cites><orcidid>0000-0003-2650-295X ; 0000-0002-5114-0519 ; 0000-0001-7969-038X ; 0000-0003-1550-7245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586297/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586297/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36215466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Kaitlyn</creatorcontrib><creatorcontrib>Teeple, Clark</creatorcontrib><creatorcontrib>Charles, Nicholas</creatorcontrib><creatorcontrib>Jung, Yeonsu</creatorcontrib><creatorcontrib>Baum, Daniel</creatorcontrib><creatorcontrib>Weaver, James C</creatorcontrib><creatorcontrib>Mahadevan, L</creatorcontrib><creatorcontrib>Wood, Robert</creatorcontrib><title>Active entanglement enables stochastic, topological grasping</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here, we circumvent the need for feedback or precise planning by using an array of fluidically actuated slender hollow elastomeric filaments to actively entangle with objects that vary in geometric and topological complexity. The resulting stochastic interactions enable a unique soft and conformable grasping strategy across a range of target objects that vary in size, weight, and shape. We experimentally evaluate the grasping performance of our strategy and use a computational framework for the collective mechanics of flexible filaments in contact with complex objects to explain our findings. Overall, our study highlights how active collective entanglement of a filament array via an uncontrolled, spatially distributed scheme provides options for soft, adaptable grasping.</description><subject>Arrays</subject><subject>Complexity</subject><subject>Computer applications</subject><subject>Elastomers</subject><subject>Entanglement</subject><subject>Filaments</subject><subject>Grasping</subject><subject>Hand Strength</subject><subject>Mathematical morphology</subject><subject>Motion detection</subject><subject>Motion planning</subject><subject>Physical Sciences</subject><subject>Robotics - methods</subject><subject>Stochasticity</subject><subject>Strategy</subject><subject>Topology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLw0AQxhdRtD7O3qTgxYPRmX0HRCjFFwhe9LxsNts0Jc3GbFrwv3eLb08zw_zmYz4-Qo4RLhAUu-xaGy8ohVxjjphvkRFCjpnkOWyTEQBVmeaU75H9GBcAkAsNu2SPSYqCSzkiVxM31Gs_9u1g26rxy9SkwRaNj-M4BDe3cajd-XgIXWhCVTvbjKvexq5uq0OyM7NN9Eef9YC83N48T--zx6e7h-nkMXNcqyFjHFQO2olCSs7KwpdM8EI67lG7klNLC8FUIaRCgVpo9KpkXCMU6OwMBDsg1x-63apY-tKlH3vbmK6vl7Z_M8HW5u-mreemCmuT7EqaqyRw9inQh9eVj4NZ1tH5prGtD6toqKJMIxcoE3r6D12EVd8mextKggSKOlGXH5TrQ4y9n30_g2A2yZhNMuYnmXRx8tvDN_8VBXsHlBOJ1A</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Becker, Kaitlyn</creator><creator>Teeple, Clark</creator><creator>Charles, Nicholas</creator><creator>Jung, Yeonsu</creator><creator>Baum, Daniel</creator><creator>Weaver, James C</creator><creator>Mahadevan, L</creator><creator>Wood, Robert</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2650-295X</orcidid><orcidid>https://orcid.org/0000-0002-5114-0519</orcidid><orcidid>https://orcid.org/0000-0001-7969-038X</orcidid><orcidid>https://orcid.org/0000-0003-1550-7245</orcidid></search><sort><creationdate>20221018</creationdate><title>Active entanglement enables stochastic, topological grasping</title><author>Becker, Kaitlyn ; Teeple, Clark ; Charles, Nicholas ; Jung, Yeonsu ; Baum, Daniel ; Weaver, James C ; Mahadevan, L ; Wood, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-3407908c5b6643dbed354b6c4e18cd42a2b537b5671518581e7d34810b1caf053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Complexity</topic><topic>Computer applications</topic><topic>Elastomers</topic><topic>Entanglement</topic><topic>Filaments</topic><topic>Grasping</topic><topic>Hand Strength</topic><topic>Mathematical morphology</topic><topic>Motion detection</topic><topic>Motion planning</topic><topic>Physical Sciences</topic><topic>Robotics - methods</topic><topic>Stochasticity</topic><topic>Strategy</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Kaitlyn</creatorcontrib><creatorcontrib>Teeple, Clark</creatorcontrib><creatorcontrib>Charles, Nicholas</creatorcontrib><creatorcontrib>Jung, Yeonsu</creatorcontrib><creatorcontrib>Baum, Daniel</creatorcontrib><creatorcontrib>Weaver, James C</creatorcontrib><creatorcontrib>Mahadevan, L</creatorcontrib><creatorcontrib>Wood, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Kaitlyn</au><au>Teeple, Clark</au><au>Charles, Nicholas</au><au>Jung, Yeonsu</au><au>Baum, Daniel</au><au>Weaver, James C</au><au>Mahadevan, L</au><au>Wood, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active entanglement enables stochastic, topological grasping</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-10-18</date><risdate>2022</risdate><volume>119</volume><issue>42</issue><spage>e2209819119</spage><epage>e2209819119</epage><pages>e2209819119-e2209819119</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here, we circumvent the need for feedback or precise planning by using an array of fluidically actuated slender hollow elastomeric filaments to actively entangle with objects that vary in geometric and topological complexity. The resulting stochastic interactions enable a unique soft and conformable grasping strategy across a range of target objects that vary in size, weight, and shape. We experimentally evaluate the grasping performance of our strategy and use a computational framework for the collective mechanics of flexible filaments in contact with complex objects to explain our findings. Overall, our study highlights how active collective entanglement of a filament array via an uncontrolled, spatially distributed scheme provides options for soft, adaptable grasping.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36215466</pmid><doi>10.1073/pnas.2209819119</doi><orcidid>https://orcid.org/0000-0003-2650-295X</orcidid><orcidid>https://orcid.org/0000-0002-5114-0519</orcidid><orcidid>https://orcid.org/0000-0001-7969-038X</orcidid><orcidid>https://orcid.org/0000-0003-1550-7245</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-10, Vol.119 (42), p.e2209819119-e2209819119 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9586297 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Arrays Complexity Computer applications Elastomers Entanglement Filaments Grasping Hand Strength Mathematical morphology Motion detection Motion planning Physical Sciences Robotics - methods Stochasticity Strategy Topology |
title | Active entanglement enables stochastic, topological grasping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20entanglement%20enables%20stochastic,%20topological%20grasping&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Becker,%20Kaitlyn&rft.date=2022-10-18&rft.volume=119&rft.issue=42&rft.spage=e2209819119&rft.epage=e2209819119&rft.pages=e2209819119-e2209819119&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2209819119&rft_dat=%3Cproquest_pubme%3E2726060218%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726060218&rft_id=info:pmid/36215466&rfr_iscdi=true |