Active entanglement enables stochastic, topological grasping

Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here, we circumvent the need for feedback or precise planning by using an array of fluidically actuated slender hollow elastomeric filament...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-10, Vol.119 (42), p.e2209819119-e2209819119
Hauptverfasser: Becker, Kaitlyn, Teeple, Clark, Charles, Nicholas, Jung, Yeonsu, Baum, Daniel, Weaver, James C, Mahadevan, L, Wood, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2209819119
container_issue 42
container_start_page e2209819119
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Becker, Kaitlyn
Teeple, Clark
Charles, Nicholas
Jung, Yeonsu
Baum, Daniel
Weaver, James C
Mahadevan, L
Wood, Robert
description Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here, we circumvent the need for feedback or precise planning by using an array of fluidically actuated slender hollow elastomeric filaments to actively entangle with objects that vary in geometric and topological complexity. The resulting stochastic interactions enable a unique soft and conformable grasping strategy across a range of target objects that vary in size, weight, and shape. We experimentally evaluate the grasping performance of our strategy and use a computational framework for the collective mechanics of flexible filaments in contact with complex objects to explain our findings. Overall, our study highlights how active collective entanglement of a filament array via an uncontrolled, spatially distributed scheme provides options for soft, adaptable grasping.
doi_str_mv 10.1073/pnas.2209819119
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9586297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726060218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-3407908c5b6643dbed354b6c4e18cd42a2b537b5671518581e7d34810b1caf053</originalsourceid><addsrcrecordid>eNpdkctLw0AQxhdRtD7O3qTgxYPRmX0HRCjFFwhe9LxsNts0Jc3GbFrwv3eLb08zw_zmYz4-Qo4RLhAUu-xaGy8ohVxjjphvkRFCjpnkOWyTEQBVmeaU75H9GBcAkAsNu2SPSYqCSzkiVxM31Gs_9u1g26rxy9SkwRaNj-M4BDe3cajd-XgIXWhCVTvbjKvexq5uq0OyM7NN9Eef9YC83N48T--zx6e7h-nkMXNcqyFjHFQO2olCSs7KwpdM8EI67lG7klNLC8FUIaRCgVpo9KpkXCMU6OwMBDsg1x-63apY-tKlH3vbmK6vl7Z_M8HW5u-mreemCmuT7EqaqyRw9inQh9eVj4NZ1tH5prGtD6toqKJMIxcoE3r6D12EVd8mextKggSKOlGXH5TrQ4y9n30_g2A2yZhNMuYnmXRx8tvDN_8VBXsHlBOJ1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726060218</pqid></control><display><type>article</type><title>Active entanglement enables stochastic, topological grasping</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Becker, Kaitlyn ; Teeple, Clark ; Charles, Nicholas ; Jung, Yeonsu ; Baum, Daniel ; Weaver, James C ; Mahadevan, L ; Wood, Robert</creator><creatorcontrib>Becker, Kaitlyn ; Teeple, Clark ; Charles, Nicholas ; Jung, Yeonsu ; Baum, Daniel ; Weaver, James C ; Mahadevan, L ; Wood, Robert</creatorcontrib><description>Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here, we circumvent the need for feedback or precise planning by using an array of fluidically actuated slender hollow elastomeric filaments to actively entangle with objects that vary in geometric and topological complexity. The resulting stochastic interactions enable a unique soft and conformable grasping strategy across a range of target objects that vary in size, weight, and shape. We experimentally evaluate the grasping performance of our strategy and use a computational framework for the collective mechanics of flexible filaments in contact with complex objects to explain our findings. Overall, our study highlights how active collective entanglement of a filament array via an uncontrolled, spatially distributed scheme provides options for soft, adaptable grasping.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2209819119</identifier><identifier>PMID: 36215466</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Arrays ; Complexity ; Computer applications ; Elastomers ; Entanglement ; Filaments ; Grasping ; Hand Strength ; Mathematical morphology ; Motion detection ; Motion planning ; Physical Sciences ; Robotics - methods ; Stochasticity ; Strategy ; Topology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-10, Vol.119 (42), p.e2209819119-e2209819119</ispartof><rights>Copyright National Academy of Sciences Oct 18, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-3407908c5b6643dbed354b6c4e18cd42a2b537b5671518581e7d34810b1caf053</citedby><cites>FETCH-LOGICAL-c487t-3407908c5b6643dbed354b6c4e18cd42a2b537b5671518581e7d34810b1caf053</cites><orcidid>0000-0003-2650-295X ; 0000-0002-5114-0519 ; 0000-0001-7969-038X ; 0000-0003-1550-7245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586297/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586297/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36215466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Kaitlyn</creatorcontrib><creatorcontrib>Teeple, Clark</creatorcontrib><creatorcontrib>Charles, Nicholas</creatorcontrib><creatorcontrib>Jung, Yeonsu</creatorcontrib><creatorcontrib>Baum, Daniel</creatorcontrib><creatorcontrib>Weaver, James C</creatorcontrib><creatorcontrib>Mahadevan, L</creatorcontrib><creatorcontrib>Wood, Robert</creatorcontrib><title>Active entanglement enables stochastic, topological grasping</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here, we circumvent the need for feedback or precise planning by using an array of fluidically actuated slender hollow elastomeric filaments to actively entangle with objects that vary in geometric and topological complexity. The resulting stochastic interactions enable a unique soft and conformable grasping strategy across a range of target objects that vary in size, weight, and shape. We experimentally evaluate the grasping performance of our strategy and use a computational framework for the collective mechanics of flexible filaments in contact with complex objects to explain our findings. Overall, our study highlights how active collective entanglement of a filament array via an uncontrolled, spatially distributed scheme provides options for soft, adaptable grasping.</description><subject>Arrays</subject><subject>Complexity</subject><subject>Computer applications</subject><subject>Elastomers</subject><subject>Entanglement</subject><subject>Filaments</subject><subject>Grasping</subject><subject>Hand Strength</subject><subject>Mathematical morphology</subject><subject>Motion detection</subject><subject>Motion planning</subject><subject>Physical Sciences</subject><subject>Robotics - methods</subject><subject>Stochasticity</subject><subject>Strategy</subject><subject>Topology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLw0AQxhdRtD7O3qTgxYPRmX0HRCjFFwhe9LxsNts0Jc3GbFrwv3eLb08zw_zmYz4-Qo4RLhAUu-xaGy8ohVxjjphvkRFCjpnkOWyTEQBVmeaU75H9GBcAkAsNu2SPSYqCSzkiVxM31Gs_9u1g26rxy9SkwRaNj-M4BDe3cajd-XgIXWhCVTvbjKvexq5uq0OyM7NN9Eef9YC83N48T--zx6e7h-nkMXNcqyFjHFQO2olCSs7KwpdM8EI67lG7klNLC8FUIaRCgVpo9KpkXCMU6OwMBDsg1x-63apY-tKlH3vbmK6vl7Z_M8HW5u-mreemCmuT7EqaqyRw9inQh9eVj4NZ1tH5prGtD6toqKJMIxcoE3r6D12EVd8mextKggSKOlGXH5TrQ4y9n30_g2A2yZhNMuYnmXRx8tvDN_8VBXsHlBOJ1A</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Becker, Kaitlyn</creator><creator>Teeple, Clark</creator><creator>Charles, Nicholas</creator><creator>Jung, Yeonsu</creator><creator>Baum, Daniel</creator><creator>Weaver, James C</creator><creator>Mahadevan, L</creator><creator>Wood, Robert</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2650-295X</orcidid><orcidid>https://orcid.org/0000-0002-5114-0519</orcidid><orcidid>https://orcid.org/0000-0001-7969-038X</orcidid><orcidid>https://orcid.org/0000-0003-1550-7245</orcidid></search><sort><creationdate>20221018</creationdate><title>Active entanglement enables stochastic, topological grasping</title><author>Becker, Kaitlyn ; Teeple, Clark ; Charles, Nicholas ; Jung, Yeonsu ; Baum, Daniel ; Weaver, James C ; Mahadevan, L ; Wood, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-3407908c5b6643dbed354b6c4e18cd42a2b537b5671518581e7d34810b1caf053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Complexity</topic><topic>Computer applications</topic><topic>Elastomers</topic><topic>Entanglement</topic><topic>Filaments</topic><topic>Grasping</topic><topic>Hand Strength</topic><topic>Mathematical morphology</topic><topic>Motion detection</topic><topic>Motion planning</topic><topic>Physical Sciences</topic><topic>Robotics - methods</topic><topic>Stochasticity</topic><topic>Strategy</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Kaitlyn</creatorcontrib><creatorcontrib>Teeple, Clark</creatorcontrib><creatorcontrib>Charles, Nicholas</creatorcontrib><creatorcontrib>Jung, Yeonsu</creatorcontrib><creatorcontrib>Baum, Daniel</creatorcontrib><creatorcontrib>Weaver, James C</creatorcontrib><creatorcontrib>Mahadevan, L</creatorcontrib><creatorcontrib>Wood, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Kaitlyn</au><au>Teeple, Clark</au><au>Charles, Nicholas</au><au>Jung, Yeonsu</au><au>Baum, Daniel</au><au>Weaver, James C</au><au>Mahadevan, L</au><au>Wood, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active entanglement enables stochastic, topological grasping</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-10-18</date><risdate>2022</risdate><volume>119</volume><issue>42</issue><spage>e2209819119</spage><epage>e2209819119</epage><pages>e2209819119-e2209819119</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here, we circumvent the need for feedback or precise planning by using an array of fluidically actuated slender hollow elastomeric filaments to actively entangle with objects that vary in geometric and topological complexity. The resulting stochastic interactions enable a unique soft and conformable grasping strategy across a range of target objects that vary in size, weight, and shape. We experimentally evaluate the grasping performance of our strategy and use a computational framework for the collective mechanics of flexible filaments in contact with complex objects to explain our findings. Overall, our study highlights how active collective entanglement of a filament array via an uncontrolled, spatially distributed scheme provides options for soft, adaptable grasping.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36215466</pmid><doi>10.1073/pnas.2209819119</doi><orcidid>https://orcid.org/0000-0003-2650-295X</orcidid><orcidid>https://orcid.org/0000-0002-5114-0519</orcidid><orcidid>https://orcid.org/0000-0001-7969-038X</orcidid><orcidid>https://orcid.org/0000-0003-1550-7245</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-10, Vol.119 (42), p.e2209819119-e2209819119
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9586297
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Arrays
Complexity
Computer applications
Elastomers
Entanglement
Filaments
Grasping
Hand Strength
Mathematical morphology
Motion detection
Motion planning
Physical Sciences
Robotics - methods
Stochasticity
Strategy
Topology
title Active entanglement enables stochastic, topological grasping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20entanglement%20enables%20stochastic,%20topological%20grasping&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Becker,%20Kaitlyn&rft.date=2022-10-18&rft.volume=119&rft.issue=42&rft.spage=e2209819119&rft.epage=e2209819119&rft.pages=e2209819119-e2209819119&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2209819119&rft_dat=%3Cproquest_pubme%3E2726060218%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726060218&rft_id=info:pmid/36215466&rfr_iscdi=true