Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion
Abstract Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery...
Gespeichert in:
Veröffentlicht in: | Stem cells translational medicine 2022-10, Vol.11 (10), p.1072-1088 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1088 |
---|---|
container_issue | 10 |
container_start_page | 1072 |
container_title | Stem cells translational medicine |
container_volume | 11 |
creator | Cho, Sumin Choi, Hyemin Jeong, Hyundoo Kwon, Su Yeon Roh, Eun Ji Jeong, Kwang-Hun Baek, Inho Kim, Byoung Ju Lee, Soo-Hong Han, Inbo Cha, Jae Min |
description | Abstract
Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute.
Graphical Abstract |
doi_str_mv | 10.1093/stcltm/szac052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9585955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/stcltm/szac052</oup_id><sourcerecordid>2720428595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-27c333b57e184e34b9a5a1096f134d08085a9e04bb17c0cbcb757dd53e373bef3</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoKurWdZa6qCZN08dG0Blf4KCgrkOa3jqRNhnzUMb_4H-2dQbBlXdzL7nfOYF7EDqk5ISSip36oLrQn_pPqQhPN9BuSnmR5Lwkm79znu2gA-9fyVB5lVcp2UY7LKclIZzsoq8HB6rTRivZ4ccQmyW2Lb6JvTT4whrAM-mc_Uim4PQ7NHgGHoyaL_sfHHo8ga7z-Nlr84IlZslU92C8tmYAZtLEVqoQ3bh9hBDG3lqHL81cGvXzutAjehVHzT7aamXn4WDd99Dz1eXT5Ca5u7--nZzfJSojNCRpoRhjNS-AlhmwrK4kl8NF8payrCElKbmsgGR1TQtFVK3qghdNwxmwgtXQsj10tvJdxLqHRoEJTnZi4XQv3VJYqcXfjdFz8WLfRcVLXnE-GBytDZx9i-CD6LVXwymkARu9SIuUZOnIDujJClXOeu-g_f2GEjHGKFYxinWMg-B4JbBx8R_7DWbPoso</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720428595</pqid></control><display><type>article</type><title>Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion</title><source>Oxford Journals Open Access Collection</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Cho, Sumin ; Choi, Hyemin ; Jeong, Hyundoo ; Kwon, Su Yeon ; Roh, Eun Ji ; Jeong, Kwang-Hun ; Baek, Inho ; Kim, Byoung Ju ; Lee, Soo-Hong ; Han, Inbo ; Cha, Jae Min</creator><creatorcontrib>Cho, Sumin ; Choi, Hyemin ; Jeong, Hyundoo ; Kwon, Su Yeon ; Roh, Eun Ji ; Jeong, Kwang-Hun ; Baek, Inho ; Kim, Byoung Ju ; Lee, Soo-Hong ; Han, Inbo ; Cha, Jae Min</creatorcontrib><description>Abstract
Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute.
Graphical Abstract</description><identifier>ISSN: 2157-6564</identifier><identifier>EISSN: 2157-6580</identifier><identifier>DOI: 10.1093/stcltm/szac052</identifier><identifier>PMID: 36180050</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Tissue Engineering and Regenerative Medicine</subject><ispartof>Stem cells translational medicine, 2022-10, Vol.11 (10), p.1072-1088</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-27c333b57e184e34b9a5a1096f134d08085a9e04bb17c0cbcb757dd53e373bef3</citedby><cites>FETCH-LOGICAL-c401t-27c333b57e184e34b9a5a1096f134d08085a9e04bb17c0cbcb757dd53e373bef3</cites><orcidid>0000-0002-0834-9325 ; 0000-0002-6058-236X ; 0000-0002-6337-9754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585955/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585955/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Cho, Sumin</creatorcontrib><creatorcontrib>Choi, Hyemin</creatorcontrib><creatorcontrib>Jeong, Hyundoo</creatorcontrib><creatorcontrib>Kwon, Su Yeon</creatorcontrib><creatorcontrib>Roh, Eun Ji</creatorcontrib><creatorcontrib>Jeong, Kwang-Hun</creatorcontrib><creatorcontrib>Baek, Inho</creatorcontrib><creatorcontrib>Kim, Byoung Ju</creatorcontrib><creatorcontrib>Lee, Soo-Hong</creatorcontrib><creatorcontrib>Han, Inbo</creatorcontrib><creatorcontrib>Cha, Jae Min</creatorcontrib><title>Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion</title><title>Stem cells translational medicine</title><description>Abstract
Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute.
Graphical Abstract</description><subject>Tissue Engineering and Regenerative Medicine</subject><issn>2157-6564</issn><issn>2157-6580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkUtLxDAUhYMoKurWdZa6qCZN08dG0Blf4KCgrkOa3jqRNhnzUMb_4H-2dQbBlXdzL7nfOYF7EDqk5ISSip36oLrQn_pPqQhPN9BuSnmR5Lwkm79znu2gA-9fyVB5lVcp2UY7LKclIZzsoq8HB6rTRivZ4ccQmyW2Lb6JvTT4whrAM-mc_Uim4PQ7NHgGHoyaL_sfHHo8ga7z-Nlr84IlZslU92C8tmYAZtLEVqoQ3bh9hBDG3lqHL81cGvXzutAjehVHzT7aamXn4WDd99Dz1eXT5Ca5u7--nZzfJSojNCRpoRhjNS-AlhmwrK4kl8NF8payrCElKbmsgGR1TQtFVK3qghdNwxmwgtXQsj10tvJdxLqHRoEJTnZi4XQv3VJYqcXfjdFz8WLfRcVLXnE-GBytDZx9i-CD6LVXwymkARu9SIuUZOnIDujJClXOeu-g_f2GEjHGKFYxinWMg-B4JbBx8R_7DWbPoso</recordid><startdate>20221021</startdate><enddate>20221021</enddate><creator>Cho, Sumin</creator><creator>Choi, Hyemin</creator><creator>Jeong, Hyundoo</creator><creator>Kwon, Su Yeon</creator><creator>Roh, Eun Ji</creator><creator>Jeong, Kwang-Hun</creator><creator>Baek, Inho</creator><creator>Kim, Byoung Ju</creator><creator>Lee, Soo-Hong</creator><creator>Han, Inbo</creator><creator>Cha, Jae Min</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0834-9325</orcidid><orcidid>https://orcid.org/0000-0002-6058-236X</orcidid><orcidid>https://orcid.org/0000-0002-6337-9754</orcidid></search><sort><creationdate>20221021</creationdate><title>Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion</title><author>Cho, Sumin ; Choi, Hyemin ; Jeong, Hyundoo ; Kwon, Su Yeon ; Roh, Eun Ji ; Jeong, Kwang-Hun ; Baek, Inho ; Kim, Byoung Ju ; Lee, Soo-Hong ; Han, Inbo ; Cha, Jae Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-27c333b57e184e34b9a5a1096f134d08085a9e04bb17c0cbcb757dd53e373bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Tissue Engineering and Regenerative Medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Sumin</creatorcontrib><creatorcontrib>Choi, Hyemin</creatorcontrib><creatorcontrib>Jeong, Hyundoo</creatorcontrib><creatorcontrib>Kwon, Su Yeon</creatorcontrib><creatorcontrib>Roh, Eun Ji</creatorcontrib><creatorcontrib>Jeong, Kwang-Hun</creatorcontrib><creatorcontrib>Baek, Inho</creatorcontrib><creatorcontrib>Kim, Byoung Ju</creatorcontrib><creatorcontrib>Lee, Soo-Hong</creatorcontrib><creatorcontrib>Han, Inbo</creatorcontrib><creatorcontrib>Cha, Jae Min</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stem cells translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Sumin</au><au>Choi, Hyemin</au><au>Jeong, Hyundoo</au><au>Kwon, Su Yeon</au><au>Roh, Eun Ji</au><au>Jeong, Kwang-Hun</au><au>Baek, Inho</au><au>Kim, Byoung Ju</au><au>Lee, Soo-Hong</au><au>Han, Inbo</au><au>Cha, Jae Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion</atitle><jtitle>Stem cells translational medicine</jtitle><date>2022-10-21</date><risdate>2022</risdate><volume>11</volume><issue>10</issue><spage>1072</spage><epage>1088</epage><pages>1072-1088</pages><issn>2157-6564</issn><eissn>2157-6580</eissn><abstract>Abstract
Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute.
Graphical Abstract</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>36180050</pmid><doi>10.1093/stcltm/szac052</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0834-9325</orcidid><orcidid>https://orcid.org/0000-0002-6058-236X</orcidid><orcidid>https://orcid.org/0000-0002-6337-9754</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2157-6564 |
ispartof | Stem cells translational medicine, 2022-10, Vol.11 (10), p.1072-1088 |
issn | 2157-6564 2157-6580 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9585955 |
source | Oxford Journals Open Access Collection; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Tissue Engineering and Regenerative Medicine |
title | Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preclinical%20Study%20of%20Human%20Bone%20Marrow-Derived%20Mesenchymal%20Stem%20Cells%20Using%20a%203-Dimensional%20Manufacturing%20Setting%20for%20Enhancing%20Spinal%20Fusion&rft.jtitle=Stem%20cells%20translational%20medicine&rft.au=Cho,%20Sumin&rft.date=2022-10-21&rft.volume=11&rft.issue=10&rft.spage=1072&rft.epage=1088&rft.pages=1072-1088&rft.issn=2157-6564&rft.eissn=2157-6580&rft_id=info:doi/10.1093/stcltm/szac052&rft_dat=%3Cproquest_pubme%3E2720428595%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720428595&rft_id=info:pmid/36180050&rft_oup_id=10.1093/stcltm/szac052&rfr_iscdi=true |