Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion

Abstract Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cells translational medicine 2022-10, Vol.11 (10), p.1072-1088
Hauptverfasser: Cho, Sumin, Choi, Hyemin, Jeong, Hyundoo, Kwon, Su Yeon, Roh, Eun Ji, Jeong, Kwang-Hun, Baek, Inho, Kim, Byoung Ju, Lee, Soo-Hong, Han, Inbo, Cha, Jae Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1088
container_issue 10
container_start_page 1072
container_title Stem cells translational medicine
container_volume 11
creator Cho, Sumin
Choi, Hyemin
Jeong, Hyundoo
Kwon, Su Yeon
Roh, Eun Ji
Jeong, Kwang-Hun
Baek, Inho
Kim, Byoung Ju
Lee, Soo-Hong
Han, Inbo
Cha, Jae Min
description Abstract Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute. Graphical Abstract
doi_str_mv 10.1093/stcltm/szac052
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9585955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/stcltm/szac052</oup_id><sourcerecordid>2720428595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-27c333b57e184e34b9a5a1096f134d08085a9e04bb17c0cbcb757dd53e373bef3</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoKurWdZa6qCZN08dG0Blf4KCgrkOa3jqRNhnzUMb_4H-2dQbBlXdzL7nfOYF7EDqk5ISSip36oLrQn_pPqQhPN9BuSnmR5Lwkm79znu2gA-9fyVB5lVcp2UY7LKclIZzsoq8HB6rTRivZ4ccQmyW2Lb6JvTT4whrAM-mc_Uim4PQ7NHgGHoyaL_sfHHo8ga7z-Nlr84IlZslU92C8tmYAZtLEVqoQ3bh9hBDG3lqHL81cGvXzutAjehVHzT7aamXn4WDd99Dz1eXT5Ca5u7--nZzfJSojNCRpoRhjNS-AlhmwrK4kl8NF8payrCElKbmsgGR1TQtFVK3qghdNwxmwgtXQsj10tvJdxLqHRoEJTnZi4XQv3VJYqcXfjdFz8WLfRcVLXnE-GBytDZx9i-CD6LVXwymkARu9SIuUZOnIDujJClXOeu-g_f2GEjHGKFYxinWMg-B4JbBx8R_7DWbPoso</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720428595</pqid></control><display><type>article</type><title>Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion</title><source>Oxford Journals Open Access Collection</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Cho, Sumin ; Choi, Hyemin ; Jeong, Hyundoo ; Kwon, Su Yeon ; Roh, Eun Ji ; Jeong, Kwang-Hun ; Baek, Inho ; Kim, Byoung Ju ; Lee, Soo-Hong ; Han, Inbo ; Cha, Jae Min</creator><creatorcontrib>Cho, Sumin ; Choi, Hyemin ; Jeong, Hyundoo ; Kwon, Su Yeon ; Roh, Eun Ji ; Jeong, Kwang-Hun ; Baek, Inho ; Kim, Byoung Ju ; Lee, Soo-Hong ; Han, Inbo ; Cha, Jae Min</creatorcontrib><description>Abstract Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute. Graphical Abstract</description><identifier>ISSN: 2157-6564</identifier><identifier>EISSN: 2157-6580</identifier><identifier>DOI: 10.1093/stcltm/szac052</identifier><identifier>PMID: 36180050</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Tissue Engineering and Regenerative Medicine</subject><ispartof>Stem cells translational medicine, 2022-10, Vol.11 (10), p.1072-1088</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-27c333b57e184e34b9a5a1096f134d08085a9e04bb17c0cbcb757dd53e373bef3</citedby><cites>FETCH-LOGICAL-c401t-27c333b57e184e34b9a5a1096f134d08085a9e04bb17c0cbcb757dd53e373bef3</cites><orcidid>0000-0002-0834-9325 ; 0000-0002-6058-236X ; 0000-0002-6337-9754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585955/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585955/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Cho, Sumin</creatorcontrib><creatorcontrib>Choi, Hyemin</creatorcontrib><creatorcontrib>Jeong, Hyundoo</creatorcontrib><creatorcontrib>Kwon, Su Yeon</creatorcontrib><creatorcontrib>Roh, Eun Ji</creatorcontrib><creatorcontrib>Jeong, Kwang-Hun</creatorcontrib><creatorcontrib>Baek, Inho</creatorcontrib><creatorcontrib>Kim, Byoung Ju</creatorcontrib><creatorcontrib>Lee, Soo-Hong</creatorcontrib><creatorcontrib>Han, Inbo</creatorcontrib><creatorcontrib>Cha, Jae Min</creatorcontrib><title>Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion</title><title>Stem cells translational medicine</title><description>Abstract Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute. Graphical Abstract</description><subject>Tissue Engineering and Regenerative Medicine</subject><issn>2157-6564</issn><issn>2157-6580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkUtLxDAUhYMoKurWdZa6qCZN08dG0Blf4KCgrkOa3jqRNhnzUMb_4H-2dQbBlXdzL7nfOYF7EDqk5ISSip36oLrQn_pPqQhPN9BuSnmR5Lwkm79znu2gA-9fyVB5lVcp2UY7LKclIZzsoq8HB6rTRivZ4ccQmyW2Lb6JvTT4whrAM-mc_Uim4PQ7NHgGHoyaL_sfHHo8ga7z-Nlr84IlZslU92C8tmYAZtLEVqoQ3bh9hBDG3lqHL81cGvXzutAjehVHzT7aamXn4WDd99Dz1eXT5Ca5u7--nZzfJSojNCRpoRhjNS-AlhmwrK4kl8NF8payrCElKbmsgGR1TQtFVK3qghdNwxmwgtXQsj10tvJdxLqHRoEJTnZi4XQv3VJYqcXfjdFz8WLfRcVLXnE-GBytDZx9i-CD6LVXwymkARu9SIuUZOnIDujJClXOeu-g_f2GEjHGKFYxinWMg-B4JbBx8R_7DWbPoso</recordid><startdate>20221021</startdate><enddate>20221021</enddate><creator>Cho, Sumin</creator><creator>Choi, Hyemin</creator><creator>Jeong, Hyundoo</creator><creator>Kwon, Su Yeon</creator><creator>Roh, Eun Ji</creator><creator>Jeong, Kwang-Hun</creator><creator>Baek, Inho</creator><creator>Kim, Byoung Ju</creator><creator>Lee, Soo-Hong</creator><creator>Han, Inbo</creator><creator>Cha, Jae Min</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0834-9325</orcidid><orcidid>https://orcid.org/0000-0002-6058-236X</orcidid><orcidid>https://orcid.org/0000-0002-6337-9754</orcidid></search><sort><creationdate>20221021</creationdate><title>Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion</title><author>Cho, Sumin ; Choi, Hyemin ; Jeong, Hyundoo ; Kwon, Su Yeon ; Roh, Eun Ji ; Jeong, Kwang-Hun ; Baek, Inho ; Kim, Byoung Ju ; Lee, Soo-Hong ; Han, Inbo ; Cha, Jae Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-27c333b57e184e34b9a5a1096f134d08085a9e04bb17c0cbcb757dd53e373bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Tissue Engineering and Regenerative Medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Sumin</creatorcontrib><creatorcontrib>Choi, Hyemin</creatorcontrib><creatorcontrib>Jeong, Hyundoo</creatorcontrib><creatorcontrib>Kwon, Su Yeon</creatorcontrib><creatorcontrib>Roh, Eun Ji</creatorcontrib><creatorcontrib>Jeong, Kwang-Hun</creatorcontrib><creatorcontrib>Baek, Inho</creatorcontrib><creatorcontrib>Kim, Byoung Ju</creatorcontrib><creatorcontrib>Lee, Soo-Hong</creatorcontrib><creatorcontrib>Han, Inbo</creatorcontrib><creatorcontrib>Cha, Jae Min</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stem cells translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Sumin</au><au>Choi, Hyemin</au><au>Jeong, Hyundoo</au><au>Kwon, Su Yeon</au><au>Roh, Eun Ji</au><au>Jeong, Kwang-Hun</au><au>Baek, Inho</au><au>Kim, Byoung Ju</au><au>Lee, Soo-Hong</au><au>Han, Inbo</au><au>Cha, Jae Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion</atitle><jtitle>Stem cells translational medicine</jtitle><date>2022-10-21</date><risdate>2022</risdate><volume>11</volume><issue>10</issue><spage>1072</spage><epage>1088</epage><pages>1072-1088</pages><issn>2157-6564</issn><eissn>2157-6580</eissn><abstract>Abstract Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute. Graphical Abstract</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>36180050</pmid><doi>10.1093/stcltm/szac052</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0834-9325</orcidid><orcidid>https://orcid.org/0000-0002-6058-236X</orcidid><orcidid>https://orcid.org/0000-0002-6337-9754</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2157-6564
ispartof Stem cells translational medicine, 2022-10, Vol.11 (10), p.1072-1088
issn 2157-6564
2157-6580
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9585955
source Oxford Journals Open Access Collection; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Tissue Engineering and Regenerative Medicine
title Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preclinical%20Study%20of%20Human%20Bone%20Marrow-Derived%20Mesenchymal%20Stem%20Cells%20Using%20a%203-Dimensional%20Manufacturing%20Setting%20for%20Enhancing%20Spinal%20Fusion&rft.jtitle=Stem%20cells%20translational%20medicine&rft.au=Cho,%20Sumin&rft.date=2022-10-21&rft.volume=11&rft.issue=10&rft.spage=1072&rft.epage=1088&rft.pages=1072-1088&rft.issn=2157-6564&rft.eissn=2157-6580&rft_id=info:doi/10.1093/stcltm/szac052&rft_dat=%3Cproquest_pubme%3E2720428595%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720428595&rft_id=info:pmid/36180050&rft_oup_id=10.1093/stcltm/szac052&rfr_iscdi=true