Force tuning through regulation of clathrin-dependent integrin endocytosis

Integrin endocytosis is essential for many fundamental cellular processes. Whether and how the internalization impacts cellular mechanics remains elusive. Whereas previous studies reported the contribution of the integrin activator, talin, in force development, the involvement of inhibitors is less...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2023-01, Vol.222 (1), p.1
Hauptverfasser: Kyumurkov, Alexander, Bouin, Anne-Pascale, Boissan, Mathieu, Manet, Sandra, Baschieri, Francesco, Proponnet-Guerault, Mathilde, Balland, Martial, Destaing, Olivier, Régent-Kloeckner, Myriam, Calmel, Claire, Nicolas, Alice, Waharte, François, Chavrier, Philippe, Montagnac, Guillaume, Planus, Emmanuelle, Albiges-Rizo, Corinne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1
container_title The Journal of cell biology
container_volume 222
creator Kyumurkov, Alexander
Bouin, Anne-Pascale
Boissan, Mathieu
Manet, Sandra
Baschieri, Francesco
Proponnet-Guerault, Mathilde
Balland, Martial
Destaing, Olivier
Régent-Kloeckner, Myriam
Calmel, Claire
Nicolas, Alice
Waharte, François
Chavrier, Philippe
Montagnac, Guillaume
Planus, Emmanuelle
Albiges-Rizo, Corinne
description Integrin endocytosis is essential for many fundamental cellular processes. Whether and how the internalization impacts cellular mechanics remains elusive. Whereas previous studies reported the contribution of the integrin activator, talin, in force development, the involvement of inhibitors is less documented. We identified ICAP-1 as an integrin inhibitor involved in mechanotransduction by co-working with NME2 to control clathrin-mediated endocytosis of integrins at the edge of focal adhesions (FA). Loss of ICAP-1 enables β3-integrin-mediated force generation independently of β1 integrin. β3-integrin-mediated forces were associated with a decrease in β3 integrin dynamics stemming from their reduced diffusion within adhesion sites and slow turnover of FA. The decrease in β3 integrin dynamics correlated with a defect in integrin endocytosis. ICAP-1 acts as an adaptor for clathrin-dependent endocytosis of integrins. ICAP-1 controls integrin endocytosis by interacting with NME2, a key regulator of dynamin-dependent clathrin-coated pits fission. Control of clathrin-mediated integrin endocytosis by an inhibitor is an unprecedented mechanism to tune forces at FA.
doi_str_mv 10.1083/jcb.202004025
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9579986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725442212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-8146b8f629bee5a4c97377cfeb20f203d2b6b767f25cd649a3847b1ed7ce9c7a3</originalsourceid><addsrcrecordid>eNpdkcGP1CAUxonRuOPq0atp4kUPXR8PKHAx2WxcVzOJFz2TltKWSQdGaDfZ_14ms050Tzze-_HxwUfIWwpXFBT7tLPdFQICcEDxjGyo4FAryuE52QAgrbVAcUFe5byDAknOXpIL1qAAzWFDvt_GZF21rMGHsVqmFNdxqpIb17ldfAxVHCpbyin5UPfu4ELvwlL5sLixtKqyj_Zhidnn1-TF0M7ZvXlcL8mv2y8_b-7q7Y-v326ut7XlXC9Hb02nhgZ155xoudWSSWkH1yEMCKzHrulkIwcUtm-4bpnisqOul9ZpK1t2ST6fdA9rt3e9LX5SO5tD8vs2PZjYevP_JPjJjPHeaCG1Vk0R-HgSmJ4cu7vemmMPmGKcobqnhf3weFmKv1eXF7P32bp5boOLazYoUXCOSLGg75-gu7imUL6iUA0oJZAfBesTZVPMObnh7ICCOSZqSqLmnGjh3_372jP9N0L2B23hnKM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760885241</pqid></control><display><type>article</type><title>Force tuning through regulation of clathrin-dependent integrin endocytosis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kyumurkov, Alexander ; Bouin, Anne-Pascale ; Boissan, Mathieu ; Manet, Sandra ; Baschieri, Francesco ; Proponnet-Guerault, Mathilde ; Balland, Martial ; Destaing, Olivier ; Régent-Kloeckner, Myriam ; Calmel, Claire ; Nicolas, Alice ; Waharte, François ; Chavrier, Philippe ; Montagnac, Guillaume ; Planus, Emmanuelle ; Albiges-Rizo, Corinne</creator><creatorcontrib>Kyumurkov, Alexander ; Bouin, Anne-Pascale ; Boissan, Mathieu ; Manet, Sandra ; Baschieri, Francesco ; Proponnet-Guerault, Mathilde ; Balland, Martial ; Destaing, Olivier ; Régent-Kloeckner, Myriam ; Calmel, Claire ; Nicolas, Alice ; Waharte, François ; Chavrier, Philippe ; Montagnac, Guillaume ; Planus, Emmanuelle ; Albiges-Rizo, Corinne</creatorcontrib><description>Integrin endocytosis is essential for many fundamental cellular processes. Whether and how the internalization impacts cellular mechanics remains elusive. Whereas previous studies reported the contribution of the integrin activator, talin, in force development, the involvement of inhibitors is less documented. We identified ICAP-1 as an integrin inhibitor involved in mechanotransduction by co-working with NME2 to control clathrin-mediated endocytosis of integrins at the edge of focal adhesions (FA). Loss of ICAP-1 enables β3-integrin-mediated force generation independently of β1 integrin. β3-integrin-mediated forces were associated with a decrease in β3 integrin dynamics stemming from their reduced diffusion within adhesion sites and slow turnover of FA. The decrease in β3 integrin dynamics correlated with a defect in integrin endocytosis. ICAP-1 acts as an adaptor for clathrin-dependent endocytosis of integrins. ICAP-1 controls integrin endocytosis by interacting with NME2, a key regulator of dynamin-dependent clathrin-coated pits fission. Control of clathrin-mediated integrin endocytosis by an inhibitor is an unprecedented mechanism to tune forces at FA.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.202004025</identifier><identifier>PMID: 36250940</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Adhesion ; Biophysics ; Clathrin ; Clathrin - metabolism ; Coated pits ; Diffusion rate ; Dynamin ; Endocytosis ; Endocytosis - physiology ; Focal Adhesions ; Integrin beta1 - genetics ; Integrin beta3 ; Integrins ; Internalization ; Life Sciences ; Mechanotransduction ; Mechanotransduction, Cellular ; Talin ; Talin - genetics</subject><ispartof>The Journal of cell biology, 2023-01, Vol.222 (1), p.1</ispartof><rights>2022 Kyumurkov et al.</rights><rights>Copyright Rockefeller University Press Jan 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2022 Kyumurkov et al. 2022 Kyumurkov et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-8146b8f629bee5a4c97377cfeb20f203d2b6b767f25cd649a3847b1ed7ce9c7a3</citedby><cites>FETCH-LOGICAL-c449t-8146b8f629bee5a4c97377cfeb20f203d2b6b767f25cd649a3847b1ed7ce9c7a3</cites><orcidid>0000-0002-7351-733X ; 0000-0001-7622-3700 ; 0000-0002-6585-9735 ; 0000-0002-9616-6173 ; 0000-0003-1758-1174 ; 0000-0001-6855-4446 ; 0000-0003-0218-5320 ; 0000-0002-6333-4150 ; 0000-0002-3981-906X ; 0000-0001-6494-5722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36250940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03834328$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyumurkov, Alexander</creatorcontrib><creatorcontrib>Bouin, Anne-Pascale</creatorcontrib><creatorcontrib>Boissan, Mathieu</creatorcontrib><creatorcontrib>Manet, Sandra</creatorcontrib><creatorcontrib>Baschieri, Francesco</creatorcontrib><creatorcontrib>Proponnet-Guerault, Mathilde</creatorcontrib><creatorcontrib>Balland, Martial</creatorcontrib><creatorcontrib>Destaing, Olivier</creatorcontrib><creatorcontrib>Régent-Kloeckner, Myriam</creatorcontrib><creatorcontrib>Calmel, Claire</creatorcontrib><creatorcontrib>Nicolas, Alice</creatorcontrib><creatorcontrib>Waharte, François</creatorcontrib><creatorcontrib>Chavrier, Philippe</creatorcontrib><creatorcontrib>Montagnac, Guillaume</creatorcontrib><creatorcontrib>Planus, Emmanuelle</creatorcontrib><creatorcontrib>Albiges-Rizo, Corinne</creatorcontrib><title>Force tuning through regulation of clathrin-dependent integrin endocytosis</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Integrin endocytosis is essential for many fundamental cellular processes. Whether and how the internalization impacts cellular mechanics remains elusive. Whereas previous studies reported the contribution of the integrin activator, talin, in force development, the involvement of inhibitors is less documented. We identified ICAP-1 as an integrin inhibitor involved in mechanotransduction by co-working with NME2 to control clathrin-mediated endocytosis of integrins at the edge of focal adhesions (FA). Loss of ICAP-1 enables β3-integrin-mediated force generation independently of β1 integrin. β3-integrin-mediated forces were associated with a decrease in β3 integrin dynamics stemming from their reduced diffusion within adhesion sites and slow turnover of FA. The decrease in β3 integrin dynamics correlated with a defect in integrin endocytosis. ICAP-1 acts as an adaptor for clathrin-dependent endocytosis of integrins. ICAP-1 controls integrin endocytosis by interacting with NME2, a key regulator of dynamin-dependent clathrin-coated pits fission. Control of clathrin-mediated integrin endocytosis by an inhibitor is an unprecedented mechanism to tune forces at FA.</description><subject>Adhesion</subject><subject>Biophysics</subject><subject>Clathrin</subject><subject>Clathrin - metabolism</subject><subject>Coated pits</subject><subject>Diffusion rate</subject><subject>Dynamin</subject><subject>Endocytosis</subject><subject>Endocytosis - physiology</subject><subject>Focal Adhesions</subject><subject>Integrin beta1 - genetics</subject><subject>Integrin beta3</subject><subject>Integrins</subject><subject>Internalization</subject><subject>Life Sciences</subject><subject>Mechanotransduction</subject><subject>Mechanotransduction, Cellular</subject><subject>Talin</subject><subject>Talin - genetics</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkcGP1CAUxonRuOPq0atp4kUPXR8PKHAx2WxcVzOJFz2TltKWSQdGaDfZ_14ms050Tzze-_HxwUfIWwpXFBT7tLPdFQICcEDxjGyo4FAryuE52QAgrbVAcUFe5byDAknOXpIL1qAAzWFDvt_GZF21rMGHsVqmFNdxqpIb17ldfAxVHCpbyin5UPfu4ELvwlL5sLixtKqyj_Zhidnn1-TF0M7ZvXlcL8mv2y8_b-7q7Y-v326ut7XlXC9Hb02nhgZ155xoudWSSWkH1yEMCKzHrulkIwcUtm-4bpnisqOul9ZpK1t2ST6fdA9rt3e9LX5SO5tD8vs2PZjYevP_JPjJjPHeaCG1Vk0R-HgSmJ4cu7vemmMPmGKcobqnhf3weFmKv1eXF7P32bp5boOLazYoUXCOSLGg75-gu7imUL6iUA0oJZAfBesTZVPMObnh7ICCOSZqSqLmnGjh3_372jP9N0L2B23hnKM</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Kyumurkov, Alexander</creator><creator>Bouin, Anne-Pascale</creator><creator>Boissan, Mathieu</creator><creator>Manet, Sandra</creator><creator>Baschieri, Francesco</creator><creator>Proponnet-Guerault, Mathilde</creator><creator>Balland, Martial</creator><creator>Destaing, Olivier</creator><creator>Régent-Kloeckner, Myriam</creator><creator>Calmel, Claire</creator><creator>Nicolas, Alice</creator><creator>Waharte, François</creator><creator>Chavrier, Philippe</creator><creator>Montagnac, Guillaume</creator><creator>Planus, Emmanuelle</creator><creator>Albiges-Rizo, Corinne</creator><general>Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7351-733X</orcidid><orcidid>https://orcid.org/0000-0001-7622-3700</orcidid><orcidid>https://orcid.org/0000-0002-6585-9735</orcidid><orcidid>https://orcid.org/0000-0002-9616-6173</orcidid><orcidid>https://orcid.org/0000-0003-1758-1174</orcidid><orcidid>https://orcid.org/0000-0001-6855-4446</orcidid><orcidid>https://orcid.org/0000-0003-0218-5320</orcidid><orcidid>https://orcid.org/0000-0002-6333-4150</orcidid><orcidid>https://orcid.org/0000-0002-3981-906X</orcidid><orcidid>https://orcid.org/0000-0001-6494-5722</orcidid></search><sort><creationdate>20230102</creationdate><title>Force tuning through regulation of clathrin-dependent integrin endocytosis</title><author>Kyumurkov, Alexander ; Bouin, Anne-Pascale ; Boissan, Mathieu ; Manet, Sandra ; Baschieri, Francesco ; Proponnet-Guerault, Mathilde ; Balland, Martial ; Destaing, Olivier ; Régent-Kloeckner, Myriam ; Calmel, Claire ; Nicolas, Alice ; Waharte, François ; Chavrier, Philippe ; Montagnac, Guillaume ; Planus, Emmanuelle ; Albiges-Rizo, Corinne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-8146b8f629bee5a4c97377cfeb20f203d2b6b767f25cd649a3847b1ed7ce9c7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adhesion</topic><topic>Biophysics</topic><topic>Clathrin</topic><topic>Clathrin - metabolism</topic><topic>Coated pits</topic><topic>Diffusion rate</topic><topic>Dynamin</topic><topic>Endocytosis</topic><topic>Endocytosis - physiology</topic><topic>Focal Adhesions</topic><topic>Integrin beta1 - genetics</topic><topic>Integrin beta3</topic><topic>Integrins</topic><topic>Internalization</topic><topic>Life Sciences</topic><topic>Mechanotransduction</topic><topic>Mechanotransduction, Cellular</topic><topic>Talin</topic><topic>Talin - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyumurkov, Alexander</creatorcontrib><creatorcontrib>Bouin, Anne-Pascale</creatorcontrib><creatorcontrib>Boissan, Mathieu</creatorcontrib><creatorcontrib>Manet, Sandra</creatorcontrib><creatorcontrib>Baschieri, Francesco</creatorcontrib><creatorcontrib>Proponnet-Guerault, Mathilde</creatorcontrib><creatorcontrib>Balland, Martial</creatorcontrib><creatorcontrib>Destaing, Olivier</creatorcontrib><creatorcontrib>Régent-Kloeckner, Myriam</creatorcontrib><creatorcontrib>Calmel, Claire</creatorcontrib><creatorcontrib>Nicolas, Alice</creatorcontrib><creatorcontrib>Waharte, François</creatorcontrib><creatorcontrib>Chavrier, Philippe</creatorcontrib><creatorcontrib>Montagnac, Guillaume</creatorcontrib><creatorcontrib>Planus, Emmanuelle</creatorcontrib><creatorcontrib>Albiges-Rizo, Corinne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kyumurkov, Alexander</au><au>Bouin, Anne-Pascale</au><au>Boissan, Mathieu</au><au>Manet, Sandra</au><au>Baschieri, Francesco</au><au>Proponnet-Guerault, Mathilde</au><au>Balland, Martial</au><au>Destaing, Olivier</au><au>Régent-Kloeckner, Myriam</au><au>Calmel, Claire</au><au>Nicolas, Alice</au><au>Waharte, François</au><au>Chavrier, Philippe</au><au>Montagnac, Guillaume</au><au>Planus, Emmanuelle</au><au>Albiges-Rizo, Corinne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Force tuning through regulation of clathrin-dependent integrin endocytosis</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2023-01-02</date><risdate>2023</risdate><volume>222</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><abstract>Integrin endocytosis is essential for many fundamental cellular processes. Whether and how the internalization impacts cellular mechanics remains elusive. Whereas previous studies reported the contribution of the integrin activator, talin, in force development, the involvement of inhibitors is less documented. We identified ICAP-1 as an integrin inhibitor involved in mechanotransduction by co-working with NME2 to control clathrin-mediated endocytosis of integrins at the edge of focal adhesions (FA). Loss of ICAP-1 enables β3-integrin-mediated force generation independently of β1 integrin. β3-integrin-mediated forces were associated with a decrease in β3 integrin dynamics stemming from their reduced diffusion within adhesion sites and slow turnover of FA. The decrease in β3 integrin dynamics correlated with a defect in integrin endocytosis. ICAP-1 acts as an adaptor for clathrin-dependent endocytosis of integrins. ICAP-1 controls integrin endocytosis by interacting with NME2, a key regulator of dynamin-dependent clathrin-coated pits fission. Control of clathrin-mediated integrin endocytosis by an inhibitor is an unprecedented mechanism to tune forces at FA.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>36250940</pmid><doi>10.1083/jcb.202004025</doi><orcidid>https://orcid.org/0000-0002-7351-733X</orcidid><orcidid>https://orcid.org/0000-0001-7622-3700</orcidid><orcidid>https://orcid.org/0000-0002-6585-9735</orcidid><orcidid>https://orcid.org/0000-0002-9616-6173</orcidid><orcidid>https://orcid.org/0000-0003-1758-1174</orcidid><orcidid>https://orcid.org/0000-0001-6855-4446</orcidid><orcidid>https://orcid.org/0000-0003-0218-5320</orcidid><orcidid>https://orcid.org/0000-0002-6333-4150</orcidid><orcidid>https://orcid.org/0000-0002-3981-906X</orcidid><orcidid>https://orcid.org/0000-0001-6494-5722</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2023-01, Vol.222 (1), p.1
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9579986
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Adhesion
Biophysics
Clathrin
Clathrin - metabolism
Coated pits
Diffusion rate
Dynamin
Endocytosis
Endocytosis - physiology
Focal Adhesions
Integrin beta1 - genetics
Integrin beta3
Integrins
Internalization
Life Sciences
Mechanotransduction
Mechanotransduction, Cellular
Talin
Talin - genetics
title Force tuning through regulation of clathrin-dependent integrin endocytosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Force%20tuning%20through%20regulation%20of%20clathrin-dependent%20integrin%20endocytosis&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Kyumurkov,%20Alexander&rft.date=2023-01-02&rft.volume=222&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=0021-9525&rft.eissn=1540-8140&rft_id=info:doi/10.1083/jcb.202004025&rft_dat=%3Cproquest_pubme%3E2725442212%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760885241&rft_id=info:pmid/36250940&rfr_iscdi=true