A New Extension of the Topp–Leone-Family of Models with Applications to Real Data

In this article, we proposed a new extension of the Topp–Leone family of distributions. Some important properties of the model are developed, such as quantile function, stochastic ordering, model series representation, moments, stress–strength reliability parameter, Renyi entropy, order statistics,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of data science 2023-02, Vol.10 (1), p.225-250
Hauptverfasser: Muhammad, Mustapha, Liu, Lixia, Abba, Badamasi, Muhammad, Isyaku, Bouchane, Mouna, Zhang, Hexin, Musa, Sani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 1
container_start_page 225
container_title Annals of data science
container_volume 10
creator Muhammad, Mustapha
Liu, Lixia
Abba, Badamasi
Muhammad, Isyaku
Bouchane, Mouna
Zhang, Hexin
Musa, Sani
description In this article, we proposed a new extension of the Topp–Leone family of distributions. Some important properties of the model are developed, such as quantile function, stochastic ordering, model series representation, moments, stress–strength reliability parameter, Renyi entropy, order statistics, and moment of residual life. A particular member called new extended Topp–Leone exponential (NETLE) is discussed. Maximum likelihood estimation (MLE), least-square estimation (LSE), and percentile estimation (PE) are used for the model parameter estimation. Simulation studies were conducted using NETLE to assess the MLE, LSE, and PE performance by examining their bias and mean square error (MSE), and the result was satisfactory. Finally, the applications of the NETLE to two real data sets are provided to illustrate the importance of the NETLG families in practice; the data sets consist of daily new deaths due to COVID-19 in California and New Jersey, USA. The new model outperformed many other existing Topp–Leone’s and exponential related distributions based on the real data illustrations.
doi_str_mv 10.1007/s40745-022-00456-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9579674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768591576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389y-6a4b4473d3851a5c0d0cafd81a3bc17079042d5a583a563104bd7c1d75396f1b3</originalsourceid><addsrcrecordid>eNp9kc1O3DAUha0KBAh4ARaVpW7YpFz_xfam0giGgjRQqdC15TgOE5SJQ5yBZtd36Bv2STAMnVIWrK6l851zfXUQOiDwmQDIo8hBcpEBpRkAF3k2fkA7lGiVCUXoxvoNfBvtx3gLAJRwoExsoW2mciqoUDvoaoIv_QOe_hx8G-vQ4lDhYe7xdei6P79-z3xofXZqF3UzPkkXofRNxA_1MMeTrmtqZ4fkingI-Lu3DT6xg91Dm5Vtot9_mbvox-n0-vgsm337en48mWWOKT1mueUF55KVTAlihYMSnK1KRSwrHJEgNXBaCisUsyJnBHhRSkdKKZjOK1KwXfRlldsti4UvnW-H3jam6-uF7UcTbG3-V9p6bm7CvdFC6lzyFHD4EtCHu6WPg1nU0fmmsa0Py2gYMK1AUy4S-ukNehuWfZvOM1TmSmgiZJ4ouqJcH2LsfbX-DAHzVJtZ1WZSbea5NjMm08fXZ6wtf0tKAFsBMUntje__7X4n9hE7qKM1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768591576</pqid></control><display><type>article</type><title>A New Extension of the Topp–Leone-Family of Models with Applications to Real Data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Muhammad, Mustapha ; Liu, Lixia ; Abba, Badamasi ; Muhammad, Isyaku ; Bouchane, Mouna ; Zhang, Hexin ; Musa, Sani</creator><creatorcontrib>Muhammad, Mustapha ; Liu, Lixia ; Abba, Badamasi ; Muhammad, Isyaku ; Bouchane, Mouna ; Zhang, Hexin ; Musa, Sani</creatorcontrib><description>In this article, we proposed a new extension of the Topp–Leone family of distributions. Some important properties of the model are developed, such as quantile function, stochastic ordering, model series representation, moments, stress–strength reliability parameter, Renyi entropy, order statistics, and moment of residual life. A particular member called new extended Topp–Leone exponential (NETLE) is discussed. Maximum likelihood estimation (MLE), least-square estimation (LSE), and percentile estimation (PE) are used for the model parameter estimation. Simulation studies were conducted using NETLE to assess the MLE, LSE, and PE performance by examining their bias and mean square error (MSE), and the result was satisfactory. Finally, the applications of the NETLE to two real data sets are provided to illustrate the importance of the NETLG families in practice; the data sets consist of daily new deaths due to COVID-19 in California and New Jersey, USA. The new model outperformed many other existing Topp–Leone’s and exponential related distributions based on the real data illustrations.</description><identifier>ISSN: 2198-5804</identifier><identifier>ISSN: 2198-5812</identifier><identifier>EISSN: 2198-5812</identifier><identifier>DOI: 10.1007/s40745-022-00456-y</identifier><identifier>PMID: 38625258</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Business and Management ; Datasets ; Economics ; Entropy (Information theory) ; Finance ; Insurance ; Management ; Mathematical models ; Maximum likelihood estimation ; Parameter estimation ; Statistics for Business</subject><ispartof>Annals of data science, 2023-02, Vol.10 (1), p.225-250</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389y-6a4b4473d3851a5c0d0cafd81a3bc17079042d5a583a563104bd7c1d75396f1b3</citedby><cites>FETCH-LOGICAL-c389y-6a4b4473d3851a5c0d0cafd81a3bc17079042d5a583a563104bd7c1d75396f1b3</cites><orcidid>0000-0003-0329-5898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40745-022-00456-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40745-022-00456-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38625258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muhammad, Mustapha</creatorcontrib><creatorcontrib>Liu, Lixia</creatorcontrib><creatorcontrib>Abba, Badamasi</creatorcontrib><creatorcontrib>Muhammad, Isyaku</creatorcontrib><creatorcontrib>Bouchane, Mouna</creatorcontrib><creatorcontrib>Zhang, Hexin</creatorcontrib><creatorcontrib>Musa, Sani</creatorcontrib><title>A New Extension of the Topp–Leone-Family of Models with Applications to Real Data</title><title>Annals of data science</title><addtitle>Ann. Data. Sci</addtitle><addtitle>Ann Data Sci</addtitle><description>In this article, we proposed a new extension of the Topp–Leone family of distributions. Some important properties of the model are developed, such as quantile function, stochastic ordering, model series representation, moments, stress–strength reliability parameter, Renyi entropy, order statistics, and moment of residual life. A particular member called new extended Topp–Leone exponential (NETLE) is discussed. Maximum likelihood estimation (MLE), least-square estimation (LSE), and percentile estimation (PE) are used for the model parameter estimation. Simulation studies were conducted using NETLE to assess the MLE, LSE, and PE performance by examining their bias and mean square error (MSE), and the result was satisfactory. Finally, the applications of the NETLE to two real data sets are provided to illustrate the importance of the NETLG families in practice; the data sets consist of daily new deaths due to COVID-19 in California and New Jersey, USA. The new model outperformed many other existing Topp–Leone’s and exponential related distributions based on the real data illustrations.</description><subject>Artificial Intelligence</subject><subject>Business and Management</subject><subject>Datasets</subject><subject>Economics</subject><subject>Entropy (Information theory)</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Parameter estimation</subject><subject>Statistics for Business</subject><issn>2198-5804</issn><issn>2198-5812</issn><issn>2198-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1O3DAUha0KBAh4ARaVpW7YpFz_xfam0giGgjRQqdC15TgOE5SJQ5yBZtd36Bv2STAMnVIWrK6l851zfXUQOiDwmQDIo8hBcpEBpRkAF3k2fkA7lGiVCUXoxvoNfBvtx3gLAJRwoExsoW2mciqoUDvoaoIv_QOe_hx8G-vQ4lDhYe7xdei6P79-z3xofXZqF3UzPkkXofRNxA_1MMeTrmtqZ4fkingI-Lu3DT6xg91Dm5Vtot9_mbvox-n0-vgsm337en48mWWOKT1mueUF55KVTAlihYMSnK1KRSwrHJEgNXBaCisUsyJnBHhRSkdKKZjOK1KwXfRlldsti4UvnW-H3jam6-uF7UcTbG3-V9p6bm7CvdFC6lzyFHD4EtCHu6WPg1nU0fmmsa0Py2gYMK1AUy4S-ukNehuWfZvOM1TmSmgiZJ4ouqJcH2LsfbX-DAHzVJtZ1WZSbea5NjMm08fXZ6wtf0tKAFsBMUntje__7X4n9hE7qKM1</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Muhammad, Mustapha</creator><creator>Liu, Lixia</creator><creator>Abba, Badamasi</creator><creator>Muhammad, Isyaku</creator><creator>Bouchane, Mouna</creator><creator>Zhang, Hexin</creator><creator>Musa, Sani</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0329-5898</orcidid></search><sort><creationdate>20230201</creationdate><title>A New Extension of the Topp–Leone-Family of Models with Applications to Real Data</title><author>Muhammad, Mustapha ; Liu, Lixia ; Abba, Badamasi ; Muhammad, Isyaku ; Bouchane, Mouna ; Zhang, Hexin ; Musa, Sani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389y-6a4b4473d3851a5c0d0cafd81a3bc17079042d5a583a563104bd7c1d75396f1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Business and Management</topic><topic>Datasets</topic><topic>Economics</topic><topic>Entropy (Information theory)</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Parameter estimation</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muhammad, Mustapha</creatorcontrib><creatorcontrib>Liu, Lixia</creatorcontrib><creatorcontrib>Abba, Badamasi</creatorcontrib><creatorcontrib>Muhammad, Isyaku</creatorcontrib><creatorcontrib>Bouchane, Mouna</creatorcontrib><creatorcontrib>Zhang, Hexin</creatorcontrib><creatorcontrib>Musa, Sani</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of data science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhammad, Mustapha</au><au>Liu, Lixia</au><au>Abba, Badamasi</au><au>Muhammad, Isyaku</au><au>Bouchane, Mouna</au><au>Zhang, Hexin</au><au>Musa, Sani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Extension of the Topp–Leone-Family of Models with Applications to Real Data</atitle><jtitle>Annals of data science</jtitle><stitle>Ann. Data. Sci</stitle><addtitle>Ann Data Sci</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>10</volume><issue>1</issue><spage>225</spage><epage>250</epage><pages>225-250</pages><issn>2198-5804</issn><issn>2198-5812</issn><eissn>2198-5812</eissn><abstract>In this article, we proposed a new extension of the Topp–Leone family of distributions. Some important properties of the model are developed, such as quantile function, stochastic ordering, model series representation, moments, stress–strength reliability parameter, Renyi entropy, order statistics, and moment of residual life. A particular member called new extended Topp–Leone exponential (NETLE) is discussed. Maximum likelihood estimation (MLE), least-square estimation (LSE), and percentile estimation (PE) are used for the model parameter estimation. Simulation studies were conducted using NETLE to assess the MLE, LSE, and PE performance by examining their bias and mean square error (MSE), and the result was satisfactory. Finally, the applications of the NETLE to two real data sets are provided to illustrate the importance of the NETLG families in practice; the data sets consist of daily new deaths due to COVID-19 in California and New Jersey, USA. The new model outperformed many other existing Topp–Leone’s and exponential related distributions based on the real data illustrations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38625258</pmid><doi>10.1007/s40745-022-00456-y</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-0329-5898</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-5804
ispartof Annals of data science, 2023-02, Vol.10 (1), p.225-250
issn 2198-5804
2198-5812
2198-5812
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9579674
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Business and Management
Datasets
Economics
Entropy (Information theory)
Finance
Insurance
Management
Mathematical models
Maximum likelihood estimation
Parameter estimation
Statistics for Business
title A New Extension of the Topp–Leone-Family of Models with Applications to Real Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Extension%20of%20the%20Topp%E2%80%93Leone-Family%20of%20Models%20with%20Applications%20to%20Real%20Data&rft.jtitle=Annals%20of%20data%20science&rft.au=Muhammad,%20Mustapha&rft.date=2023-02-01&rft.volume=10&rft.issue=1&rft.spage=225&rft.epage=250&rft.pages=225-250&rft.issn=2198-5804&rft.eissn=2198-5812&rft_id=info:doi/10.1007/s40745-022-00456-y&rft_dat=%3Cproquest_pubme%3E2768591576%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2768591576&rft_id=info:pmid/38625258&rfr_iscdi=true