Introducing the Prototypical Stimulus Characteristics Toolbox: Protosc
Many studies use different categories of images to define their conditions. Since any difference between these categories is a valid candidate to explain category-related behavioral differences, knowledge about the objective image differences between categories is crucial for the interpretation of t...
Gespeichert in:
Veröffentlicht in: | Behavior Research Methods 2022-10, Vol.54 (5), p.2422-2432 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2432 |
---|---|
container_issue | 5 |
container_start_page | 2422 |
container_title | Behavior Research Methods |
container_volume | 54 |
creator | Stuit, S. M. Paffen, C. L. E. Van der Stigchel, S. |
description | Many studies use different categories of images to define their conditions. Since any difference between these categories is a valid candidate to explain category-related behavioral differences, knowledge about the objective image differences between categories is crucial for the interpretation of the behaviors. However, natural images vary in many image features and not every feature is equally important in describing the differences between the categories. Here, we provide a methodological approach to find as many of the image features as possible, using machine learning performance as a tool, that have predictive value over the category the images belong to. In other words, we describe a means to find the features of a group of images by which the categories can be objectively and quantitatively defined. Note that we are not aiming to provide a means for the best possible decoding performance; instead, our aim is to uncover prototypical characteristics of the categories. To facilitate the use of this method, we offer an open-source, MATLAB-based toolbox that performs such an analysis and aids the user in visualizing the features of relevance. We first applied the toolbox to a mock data set with a ground truth to show the sensitivity of the approach. Next, we applied the toolbox to a set of natural images as a more practical example. |
doi_str_mv | 10.3758/s13428-021-01737-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9579116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723205204</galeid><sourcerecordid>A723205204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-935f8c2bfc87aa92822fc70bfca635745b5285efa7969961f914273a2427d6973</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMotlb_gAsZcONmanKSTBIXQrlYLRQstK5Dbm7m3pSZyTXJiP33Hp3aDxcSyOfznryHl5DXjB5zJfX7wrgA3VJgLWWKq9Y8IYdMStFyCfrpg_0BeVHKNaVcAxPPyQEXhmkAdkhOz6aa02b2cdo2dReai5xqqjf76N3QXNY4zsNcmtXOZedryLHU6EtzldKwTj8_LHjxL8mz3g0lvLpdj8i3009Xqy_t-dfPZ6uT89ZLwWpruOy1h3XvtXLOAHrovaJ4dh2XSsg1mpWhd8p0xnSsN0yA4g5w3nRG8SPycam7n9dj2PiA7t1g9zmOLt_Y5KJ9_DLFnd2mH9ZIZRjrsMC72wI5fZ9DqXaMxYdhcFNIc7HQIdUB5xrRt_-g12nOE7ZnQUFHBQjNkTpeqK0bgo1Tn_Bfj2MTxujTFPqI9ycKOFAJVKAAFoHPqZQc-jv3jNrfudolV4u52j-5WoOiNw_7vpP8DRIBvgAFn6ZtyPdm_1P2F2horeo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726042483</pqid></control><display><type>article</type><title>Introducing the Prototypical Stimulus Characteristics Toolbox: Protosc</title><source>SpringerLink Journals</source><creator>Stuit, S. M. ; Paffen, C. L. E. ; Van der Stigchel, S.</creator><creatorcontrib>Stuit, S. M. ; Paffen, C. L. E. ; Van der Stigchel, S.</creatorcontrib><description>Many studies use different categories of images to define their conditions. Since any difference between these categories is a valid candidate to explain category-related behavioral differences, knowledge about the objective image differences between categories is crucial for the interpretation of the behaviors. However, natural images vary in many image features and not every feature is equally important in describing the differences between the categories. Here, we provide a methodological approach to find as many of the image features as possible, using machine learning performance as a tool, that have predictive value over the category the images belong to. In other words, we describe a means to find the features of a group of images by which the categories can be objectively and quantitatively defined. Note that we are not aiming to provide a means for the best possible decoding performance; instead, our aim is to uncover prototypical characteristics of the categories. To facilitate the use of this method, we offer an open-source, MATLAB-based toolbox that performs such an analysis and aids the user in visualizing the features of relevance. We first applied the toolbox to a mock data set with a ground truth to show the sensitivity of the approach. Next, we applied the toolbox to a set of natural images as a more practical example.</description><identifier>ISSN: 1554-3528</identifier><identifier>ISSN: 1554-351X</identifier><identifier>EISSN: 1554-3528</identifier><identifier>DOI: 10.3758/s13428-021-01737-9</identifier><identifier>PMID: 34918221</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Behavioral Science and Psychology ; Cognitive Psychology ; Machine learning ; Psychology</subject><ispartof>Behavior Research Methods, 2022-10, Vol.54 (5), p.2422-2432</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-935f8c2bfc87aa92822fc70bfca635745b5285efa7969961f914273a2427d6973</citedby><cites>FETCH-LOGICAL-c541t-935f8c2bfc87aa92822fc70bfca635745b5285efa7969961f914273a2427d6973</cites><orcidid>0000-0003-3891-2171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3758/s13428-021-01737-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3758/s13428-021-01737-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34918221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stuit, S. M.</creatorcontrib><creatorcontrib>Paffen, C. L. E.</creatorcontrib><creatorcontrib>Van der Stigchel, S.</creatorcontrib><title>Introducing the Prototypical Stimulus Characteristics Toolbox: Protosc</title><title>Behavior Research Methods</title><addtitle>Behav Res</addtitle><addtitle>Behav Res Methods</addtitle><description>Many studies use different categories of images to define their conditions. Since any difference between these categories is a valid candidate to explain category-related behavioral differences, knowledge about the objective image differences between categories is crucial for the interpretation of the behaviors. However, natural images vary in many image features and not every feature is equally important in describing the differences between the categories. Here, we provide a methodological approach to find as many of the image features as possible, using machine learning performance as a tool, that have predictive value over the category the images belong to. In other words, we describe a means to find the features of a group of images by which the categories can be objectively and quantitatively defined. Note that we are not aiming to provide a means for the best possible decoding performance; instead, our aim is to uncover prototypical characteristics of the categories. To facilitate the use of this method, we offer an open-source, MATLAB-based toolbox that performs such an analysis and aids the user in visualizing the features of relevance. We first applied the toolbox to a mock data set with a ground truth to show the sensitivity of the approach. Next, we applied the toolbox to a set of natural images as a more practical example.</description><subject>Analysis</subject><subject>Behavioral Science and Psychology</subject><subject>Cognitive Psychology</subject><subject>Machine learning</subject><subject>Psychology</subject><issn>1554-3528</issn><issn>1554-351X</issn><issn>1554-3528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kU1rFTEUhoMotlb_gAsZcONmanKSTBIXQrlYLRQstK5Dbm7m3pSZyTXJiP33Hp3aDxcSyOfznryHl5DXjB5zJfX7wrgA3VJgLWWKq9Y8IYdMStFyCfrpg_0BeVHKNaVcAxPPyQEXhmkAdkhOz6aa02b2cdo2dReai5xqqjf76N3QXNY4zsNcmtXOZedryLHU6EtzldKwTj8_LHjxL8mz3g0lvLpdj8i3009Xqy_t-dfPZ6uT89ZLwWpruOy1h3XvtXLOAHrovaJ4dh2XSsg1mpWhd8p0xnSsN0yA4g5w3nRG8SPycam7n9dj2PiA7t1g9zmOLt_Y5KJ9_DLFnd2mH9ZIZRjrsMC72wI5fZ9DqXaMxYdhcFNIc7HQIdUB5xrRt_-g12nOE7ZnQUFHBQjNkTpeqK0bgo1Tn_Bfj2MTxujTFPqI9ycKOFAJVKAAFoHPqZQc-jv3jNrfudolV4u52j-5WoOiNw_7vpP8DRIBvgAFn6ZtyPdm_1P2F2horeo</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Stuit, S. M.</creator><creator>Paffen, C. L. E.</creator><creator>Van der Stigchel, S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>4T-</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3891-2171</orcidid></search><sort><creationdate>20221001</creationdate><title>Introducing the Prototypical Stimulus Characteristics Toolbox: Protosc</title><author>Stuit, S. M. ; Paffen, C. L. E. ; Van der Stigchel, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-935f8c2bfc87aa92822fc70bfca635745b5285efa7969961f914273a2427d6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Behavioral Science and Psychology</topic><topic>Cognitive Psychology</topic><topic>Machine learning</topic><topic>Psychology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stuit, S. M.</creatorcontrib><creatorcontrib>Paffen, C. L. E.</creatorcontrib><creatorcontrib>Van der Stigchel, S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Behavior Research Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stuit, S. M.</au><au>Paffen, C. L. E.</au><au>Van der Stigchel, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introducing the Prototypical Stimulus Characteristics Toolbox: Protosc</atitle><jtitle>Behavior Research Methods</jtitle><stitle>Behav Res</stitle><addtitle>Behav Res Methods</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>54</volume><issue>5</issue><spage>2422</spage><epage>2432</epage><pages>2422-2432</pages><issn>1554-3528</issn><issn>1554-351X</issn><eissn>1554-3528</eissn><abstract>Many studies use different categories of images to define their conditions. Since any difference between these categories is a valid candidate to explain category-related behavioral differences, knowledge about the objective image differences between categories is crucial for the interpretation of the behaviors. However, natural images vary in many image features and not every feature is equally important in describing the differences between the categories. Here, we provide a methodological approach to find as many of the image features as possible, using machine learning performance as a tool, that have predictive value over the category the images belong to. In other words, we describe a means to find the features of a group of images by which the categories can be objectively and quantitatively defined. Note that we are not aiming to provide a means for the best possible decoding performance; instead, our aim is to uncover prototypical characteristics of the categories. To facilitate the use of this method, we offer an open-source, MATLAB-based toolbox that performs such an analysis and aids the user in visualizing the features of relevance. We first applied the toolbox to a mock data set with a ground truth to show the sensitivity of the approach. Next, we applied the toolbox to a set of natural images as a more practical example.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34918221</pmid><doi>10.3758/s13428-021-01737-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3891-2171</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-3528 |
ispartof | Behavior Research Methods, 2022-10, Vol.54 (5), p.2422-2432 |
issn | 1554-3528 1554-351X 1554-3528 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9579116 |
source | SpringerLink Journals |
subjects | Analysis Behavioral Science and Psychology Cognitive Psychology Machine learning Psychology |
title | Introducing the Prototypical Stimulus Characteristics Toolbox: Protosc |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introducing%20the%20Prototypical%20Stimulus%20Characteristics%20Toolbox:%20Protosc&rft.jtitle=Behavior%20Research%20Methods&rft.au=Stuit,%20S.%20M.&rft.date=2022-10-01&rft.volume=54&rft.issue=5&rft.spage=2422&rft.epage=2432&rft.pages=2422-2432&rft.issn=1554-3528&rft.eissn=1554-3528&rft_id=info:doi/10.3758/s13428-021-01737-9&rft_dat=%3Cgale_pubme%3EA723205204%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726042483&rft_id=info:pmid/34918221&rft_galeid=A723205204&rfr_iscdi=true |