Ultra-broadband mid-infrared generation in dispersion-engineered thin-film lithium niobate

Thin-film lithium niobate (TFLN) is an emerging platform for compact, low-power nonlinear-optical devices, and has been used extensively for near-infrared frequency conversion. Recent work has extended these devices to mid-infrared wavelengths, where broadly tunable sources may be used for chemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-08, Vol.30 (18), p.32752-32760
Hauptverfasser: Mishra, Jatadhari, Jankowski, Marc, Hwang, Alexander Y, Stokowski, Hubert S, McKenna, Timothy P, Langrock, Carsten, Ng, Edwin, Heydari, David, Mabuchi, Hideo, Safavi-Naeini, Amir H, Fejer, M M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32760
container_issue 18
container_start_page 32752
container_title Optics express
container_volume 30
creator Mishra, Jatadhari
Jankowski, Marc
Hwang, Alexander Y
Stokowski, Hubert S
McKenna, Timothy P
Langrock, Carsten
Ng, Edwin
Heydari, David
Mabuchi, Hideo
Safavi-Naeini, Amir H
Fejer, M M
description Thin-film lithium niobate (TFLN) is an emerging platform for compact, low-power nonlinear-optical devices, and has been used extensively for near-infrared frequency conversion. Recent work has extended these devices to mid-infrared wavelengths, where broadly tunable sources may be used for chemical sensing. To this end, we demonstrate efficient and broadband difference frequency generation between a fixed 1-µm pump and a tunable telecom source in uniformly-poled TFLN-on-sapphire by harnessing the dispersion-engineering available in tightly-confining waveguides. We show a simultaneous 1-2 order-of-magnitude improvement in conversion efficiency and ∼5-fold enhancement of operating bandwidth for mid-infrared generation when compared to equal-length conventional lithium niobate waveguides. We also examine the effects of mid-infrared loss from surface-adsorbed water on the performance of these devices.
doi_str_mv 10.1364/OE.467580
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9576285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725204620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-956ec98953c13544fa41a11c027b9fe25d9f077ea30c6d313e9948bd3e6acd1d3</originalsourceid><addsrcrecordid>eNpVkU1LxDAQhoMofqwe_ANSPOmhmq82zUWQZf0AYS968RLSZLobaZM1yQr-e7usip5mhnl45x1ehE4JviKs5tfz2RWvRdXgHXRIsOQlx43Y_dMfoKOU3jAmXEixjw5YTTllDB-i15c-R122MWjbam-LwdnS-S7qCLZYgIeoswu-cL6wLq0gpnEqwS-cB9gweel82bl-KHo39uuh8C60OsMx2ut0n-Dku07Qy93sefpQPs3vH6e3T6XhmOZSVjUY2ciKGcIqzjvNiSbEYCpa2QGtrOywEKAZNrVlhIGUvGktg1obSyyboJut7mrdDmAN-PGjXq2iG3T8VEE79X_j3VItwoeSlahpU40C51uBkLJTybgMZmmC92CyIk1DpWxG6OL7Sgzva0hZDS4Z6HvtIayTooJWFPOa4hG93KImhpQidL9eCFabwNR8praBjezZX_O_5E9C7AtEPJIB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725204620</pqid></control><display><type>article</type><title>Ultra-broadband mid-infrared generation in dispersion-engineered thin-film lithium niobate</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Mishra, Jatadhari ; Jankowski, Marc ; Hwang, Alexander Y ; Stokowski, Hubert S ; McKenna, Timothy P ; Langrock, Carsten ; Ng, Edwin ; Heydari, David ; Mabuchi, Hideo ; Safavi-Naeini, Amir H ; Fejer, M M</creator><creatorcontrib>Mishra, Jatadhari ; Jankowski, Marc ; Hwang, Alexander Y ; Stokowski, Hubert S ; McKenna, Timothy P ; Langrock, Carsten ; Ng, Edwin ; Heydari, David ; Mabuchi, Hideo ; Safavi-Naeini, Amir H ; Fejer, M M ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Thin-film lithium niobate (TFLN) is an emerging platform for compact, low-power nonlinear-optical devices, and has been used extensively for near-infrared frequency conversion. Recent work has extended these devices to mid-infrared wavelengths, where broadly tunable sources may be used for chemical sensing. To this end, we demonstrate efficient and broadband difference frequency generation between a fixed 1-µm pump and a tunable telecom source in uniformly-poled TFLN-on-sapphire by harnessing the dispersion-engineering available in tightly-confining waveguides. We show a simultaneous 1-2 order-of-magnitude improvement in conversion efficiency and ∼5-fold enhancement of operating bandwidth for mid-infrared generation when compared to equal-length conventional lithium niobate waveguides. We also examine the effects of mid-infrared loss from surface-adsorbed water on the performance of these devices.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.467580</identifier><identifier>PMID: 36242330</identifier><language>eng</language><publisher>United States: Optical Society of America (OSA)</publisher><subject>OTHER INSTRUMENTATION</subject><ispartof>Optics express, 2022-08, Vol.30 (18), p.32752-32760</ispartof><rights>2022 Optica Publishing Group under the terms of the 2022 Optica Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-956ec98953c13544fa41a11c027b9fe25d9f077ea30c6d313e9948bd3e6acd1d3</citedby><cites>FETCH-LOGICAL-c402t-956ec98953c13544fa41a11c027b9fe25d9f077ea30c6d313e9948bd3e6acd1d3</cites><orcidid>0000-0002-2947-5312 ; 0000-0001-6416-9639 ; 0000-0003-1845-7415 ; 0000-0002-2433-4318 ; 0000-0001-8132-7336 ; 0000000164169639 ; 0000000318457415 ; 0000000224334318 ; 0000000229475312 ; 0000000181327336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36242330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1882998$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mishra, Jatadhari</creatorcontrib><creatorcontrib>Jankowski, Marc</creatorcontrib><creatorcontrib>Hwang, Alexander Y</creatorcontrib><creatorcontrib>Stokowski, Hubert S</creatorcontrib><creatorcontrib>McKenna, Timothy P</creatorcontrib><creatorcontrib>Langrock, Carsten</creatorcontrib><creatorcontrib>Ng, Edwin</creatorcontrib><creatorcontrib>Heydari, David</creatorcontrib><creatorcontrib>Mabuchi, Hideo</creatorcontrib><creatorcontrib>Safavi-Naeini, Amir H</creatorcontrib><creatorcontrib>Fejer, M M</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Ultra-broadband mid-infrared generation in dispersion-engineered thin-film lithium niobate</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Thin-film lithium niobate (TFLN) is an emerging platform for compact, low-power nonlinear-optical devices, and has been used extensively for near-infrared frequency conversion. Recent work has extended these devices to mid-infrared wavelengths, where broadly tunable sources may be used for chemical sensing. To this end, we demonstrate efficient and broadband difference frequency generation between a fixed 1-µm pump and a tunable telecom source in uniformly-poled TFLN-on-sapphire by harnessing the dispersion-engineering available in tightly-confining waveguides. We show a simultaneous 1-2 order-of-magnitude improvement in conversion efficiency and ∼5-fold enhancement of operating bandwidth for mid-infrared generation when compared to equal-length conventional lithium niobate waveguides. We also examine the effects of mid-infrared loss from surface-adsorbed water on the performance of these devices.</description><subject>OTHER INSTRUMENTATION</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkU1LxDAQhoMofqwe_ANSPOmhmq82zUWQZf0AYS968RLSZLobaZM1yQr-e7usip5mhnl45x1ehE4JviKs5tfz2RWvRdXgHXRIsOQlx43Y_dMfoKOU3jAmXEixjw5YTTllDB-i15c-R122MWjbam-LwdnS-S7qCLZYgIeoswu-cL6wLq0gpnEqwS-cB9gweel82bl-KHo39uuh8C60OsMx2ut0n-Dku07Qy93sefpQPs3vH6e3T6XhmOZSVjUY2ciKGcIqzjvNiSbEYCpa2QGtrOywEKAZNrVlhIGUvGktg1obSyyboJut7mrdDmAN-PGjXq2iG3T8VEE79X_j3VItwoeSlahpU40C51uBkLJTybgMZmmC92CyIk1DpWxG6OL7Sgzva0hZDS4Z6HvtIayTooJWFPOa4hG93KImhpQidL9eCFabwNR8praBjezZX_O_5E9C7AtEPJIB</recordid><startdate>20220829</startdate><enddate>20220829</enddate><creator>Mishra, Jatadhari</creator><creator>Jankowski, Marc</creator><creator>Hwang, Alexander Y</creator><creator>Stokowski, Hubert S</creator><creator>McKenna, Timothy P</creator><creator>Langrock, Carsten</creator><creator>Ng, Edwin</creator><creator>Heydari, David</creator><creator>Mabuchi, Hideo</creator><creator>Safavi-Naeini, Amir H</creator><creator>Fejer, M M</creator><general>Optical Society of America (OSA)</general><general>Optica Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2947-5312</orcidid><orcidid>https://orcid.org/0000-0001-6416-9639</orcidid><orcidid>https://orcid.org/0000-0003-1845-7415</orcidid><orcidid>https://orcid.org/0000-0002-2433-4318</orcidid><orcidid>https://orcid.org/0000-0001-8132-7336</orcidid><orcidid>https://orcid.org/0000000164169639</orcidid><orcidid>https://orcid.org/0000000318457415</orcidid><orcidid>https://orcid.org/0000000224334318</orcidid><orcidid>https://orcid.org/0000000229475312</orcidid><orcidid>https://orcid.org/0000000181327336</orcidid></search><sort><creationdate>20220829</creationdate><title>Ultra-broadband mid-infrared generation in dispersion-engineered thin-film lithium niobate</title><author>Mishra, Jatadhari ; Jankowski, Marc ; Hwang, Alexander Y ; Stokowski, Hubert S ; McKenna, Timothy P ; Langrock, Carsten ; Ng, Edwin ; Heydari, David ; Mabuchi, Hideo ; Safavi-Naeini, Amir H ; Fejer, M M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-956ec98953c13544fa41a11c027b9fe25d9f077ea30c6d313e9948bd3e6acd1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>OTHER INSTRUMENTATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Jatadhari</creatorcontrib><creatorcontrib>Jankowski, Marc</creatorcontrib><creatorcontrib>Hwang, Alexander Y</creatorcontrib><creatorcontrib>Stokowski, Hubert S</creatorcontrib><creatorcontrib>McKenna, Timothy P</creatorcontrib><creatorcontrib>Langrock, Carsten</creatorcontrib><creatorcontrib>Ng, Edwin</creatorcontrib><creatorcontrib>Heydari, David</creatorcontrib><creatorcontrib>Mabuchi, Hideo</creatorcontrib><creatorcontrib>Safavi-Naeini, Amir H</creatorcontrib><creatorcontrib>Fejer, M M</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Jatadhari</au><au>Jankowski, Marc</au><au>Hwang, Alexander Y</au><au>Stokowski, Hubert S</au><au>McKenna, Timothy P</au><au>Langrock, Carsten</au><au>Ng, Edwin</au><au>Heydari, David</au><au>Mabuchi, Hideo</au><au>Safavi-Naeini, Amir H</au><au>Fejer, M M</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-broadband mid-infrared generation in dispersion-engineered thin-film lithium niobate</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2022-08-29</date><risdate>2022</risdate><volume>30</volume><issue>18</issue><spage>32752</spage><epage>32760</epage><pages>32752-32760</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Thin-film lithium niobate (TFLN) is an emerging platform for compact, low-power nonlinear-optical devices, and has been used extensively for near-infrared frequency conversion. Recent work has extended these devices to mid-infrared wavelengths, where broadly tunable sources may be used for chemical sensing. To this end, we demonstrate efficient and broadband difference frequency generation between a fixed 1-µm pump and a tunable telecom source in uniformly-poled TFLN-on-sapphire by harnessing the dispersion-engineering available in tightly-confining waveguides. We show a simultaneous 1-2 order-of-magnitude improvement in conversion efficiency and ∼5-fold enhancement of operating bandwidth for mid-infrared generation when compared to equal-length conventional lithium niobate waveguides. We also examine the effects of mid-infrared loss from surface-adsorbed water on the performance of these devices.</abstract><cop>United States</cop><pub>Optical Society of America (OSA)</pub><pmid>36242330</pmid><doi>10.1364/OE.467580</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2947-5312</orcidid><orcidid>https://orcid.org/0000-0001-6416-9639</orcidid><orcidid>https://orcid.org/0000-0003-1845-7415</orcidid><orcidid>https://orcid.org/0000-0002-2433-4318</orcidid><orcidid>https://orcid.org/0000-0001-8132-7336</orcidid><orcidid>https://orcid.org/0000000164169639</orcidid><orcidid>https://orcid.org/0000000318457415</orcidid><orcidid>https://orcid.org/0000000224334318</orcidid><orcidid>https://orcid.org/0000000229475312</orcidid><orcidid>https://orcid.org/0000000181327336</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2022-08, Vol.30 (18), p.32752-32760
issn 1094-4087
1094-4087
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9576285
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects OTHER INSTRUMENTATION
title Ultra-broadband mid-infrared generation in dispersion-engineered thin-film lithium niobate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A25%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-broadband%20mid-infrared%20generation%20in%20dispersion-engineered%20thin-film%20lithium%20niobate&rft.jtitle=Optics%20express&rft.au=Mishra,%20Jatadhari&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2022-08-29&rft.volume=30&rft.issue=18&rft.spage=32752&rft.epage=32760&rft.pages=32752-32760&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.467580&rft_dat=%3Cproquest_pubme%3E2725204620%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725204620&rft_id=info:pmid/36242330&rfr_iscdi=true