Radiolabeled Aminopyrazoles as Novel Isoform Selective Probes for pJNK3 Quantification
The c-Jun N-terminal kinase 3 (JNK3) is a stress-activated kinase primarily expressed in the brain and implicated as an early mediator of neuronal apoptosis. We sought to develop a PET tracer to visualize pathological JNK3 activation. Because regional JNK3 activation precedes apoptosis, such an imag...
Gespeichert in:
Veröffentlicht in: | ACS medicinal chemistry letters 2022-10, Vol.13 (10), p.1606-1614 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The c-Jun N-terminal kinase 3 (JNK3) is a stress-activated kinase primarily expressed in the brain and implicated as an early mediator of neuronal apoptosis. We sought to develop a PET tracer to visualize pathological JNK3 activation. Because regional JNK3 activation precedes apoptosis, such an imaging agent might enable the detection of “at risk” brain regions prior to neuronal death. We prepared a set of 19F-containing compounds on the basis of the reported aminopyrazoles. The candidate, F3, was tritiated and used in autoradiography experiments to demonstrate regional and temporal changes in JNK3 activation in a mouse model of Parkinson’s disease. A significant increase in pJNK3 B max versus control animals in multiple brain regions was observed at 8 months, including the ventral midbrain. Pathological activation of JNK3 in these regions preceded statistically significant neuron loss. Analyses of brain concentrations of [18F]-F3 in naïve rats following intravenous injection revealed a small but detectable signal over the background, but was likely not sufficient to support PET imaging. |
---|---|
ISSN: | 1948-5875 1948-5875 |
DOI: | 10.1021/acsmedchemlett.2c00278 |