Mir‐122 upregulation and let‐7f downregulation combination: The effects on hepatic differentiation of hiPSCs on the PCL‐Gel‐HA nanofibrous scaffold

Cell therapy and tissue engineering as promising candidates for the liver transplantation dilemma are of special interest. Induced pluripotent stem cells (iPSCs) are one of the best sources in this field, but their differentiation methods to hepatocytes have remained challenging. We transduced human...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2022-10, Vol.26 (20), p.5235-5245
Hauptverfasser: Parvanak, Maliheh, Mostafavi‐Pour, Zohreh, Soleimani, Masoud, Atashi, Amir, Arefian, Ehsan, Esmaeili, Elaheh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5245
container_issue 20
container_start_page 5235
container_title Journal of cellular and molecular medicine
container_volume 26
creator Parvanak, Maliheh
Mostafavi‐Pour, Zohreh
Soleimani, Masoud
Atashi, Amir
Arefian, Ehsan
Esmaeili, Elaheh
description Cell therapy and tissue engineering as promising candidates for the liver transplantation dilemma are of special interest. Induced pluripotent stem cells (iPSCs) are one of the best sources in this field, but their differentiation methods to hepatocytes have remained challenging. We transduced human iPSCs (hiPSCs) with miR‐122 and off‐let‐7f (hiPSCsmiR‐122 + off‐let‐7f) to evaluate how they can differentiate hiPSCs to hepatocyte‐like cells (HLCs) without any extrinsic growth factor. Additionally, we studied the effect of Poly ɛ‐caprolactone‐gelatin‐hyaluronic acid (PCL‐Gel‐HA) nanofibrous scaffold as an extracellular matrix (ECM) simulator on differentiation improvement. Definitive endoderm markers (FOXA2 and SOX17), as well as hepatic markers (AFP, Albumin, CK18, HNF4α) expression, were significantly higher in hiPSCsmiR‐122 + off‐let‐7f derived HLCs (hiPSCs‐HLCs) compared to the control group (miR‐scramble transduced hiPSCs: hiPSCsscramble). hiPSCs‐HLCs indicated hepatocyte morphological characteristics and positive immunostaining for AFP, Albumin and HNF4α. Albumin and urea secretion were significantly higher in hiPSCs‐HLCs than hiPSCsscramble. Comparing these markers in the PCL‐Gel‐HA group with the tissue culture plate (TCP) group revealed that PCL‐Gel‐HA could improve differentiation towards HLCs significantly. Regarding our results, these microRNAs can be used to differentiate hiPSCs to the functional hepatocytes for disease modelling, drug screening and cell‐based therapy in future studies.
doi_str_mv 10.1111/jcmm.17552
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9575133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714064225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3142-a9bede09129768bccc19bab11497f75c07b1504366c8bddafa7b3080f0d8b7f73</originalsourceid><addsrcrecordid>eNp9kd9qFDEUxoMotlZvfIKAN1LYmj8zk8QLoQy2VXaxYL0OSSbpZplJ1mTG0rs-gve-nU9idmcR9cJcJId8v-_jHA4ALzE6w-W82ZhhOMOsrskjcIxrThaVoNXjQ4055UfgWc4bhGiDqXgKjmiDBCe4OQY_Vj79fPiOCYHTNtnbqVejjwGq0MHejkViDnbxLvyhmThoH_b1W3izttA6Z82YYdHWdlsEAztf_pINo5890cG1v_7c7qGxeK7bZQm_tH25r85hUCE6r1OcMsxGORf77jl44lSf7YvDewK-XLy_aa8Wy0-XH9rz5cJQXJGFEtp2FglMBGu4NsZgoZXGuBLMsdogpnGNKto0huuuU04xTRFHDnVcF4KegHdz7nbSg-1M6TqpXm6TH1S6l1F5-bcS_Frexm9S1KzGlJaA14eAFL9ONo9y8NnYvlfBloEkYbhCTUVIXdBX_6CbOKVQxisUqQliFd9RpzNlUsw5Wfe7GYzkbudyt3O533mB8Qzf-d7e_4eUH9vVavb8Ap3cs4c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725207485</pqid></control><display><type>article</type><title>Mir‐122 upregulation and let‐7f downregulation combination: The effects on hepatic differentiation of hiPSCs on the PCL‐Gel‐HA nanofibrous scaffold</title><source>Wiley Online Library - AutoHoldings Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Parvanak, Maliheh ; Mostafavi‐Pour, Zohreh ; Soleimani, Masoud ; Atashi, Amir ; Arefian, Ehsan ; Esmaeili, Elaheh</creator><creatorcontrib>Parvanak, Maliheh ; Mostafavi‐Pour, Zohreh ; Soleimani, Masoud ; Atashi, Amir ; Arefian, Ehsan ; Esmaeili, Elaheh</creatorcontrib><description>Cell therapy and tissue engineering as promising candidates for the liver transplantation dilemma are of special interest. Induced pluripotent stem cells (iPSCs) are one of the best sources in this field, but their differentiation methods to hepatocytes have remained challenging. We transduced human iPSCs (hiPSCs) with miR‐122 and off‐let‐7f (hiPSCsmiR‐122 + off‐let‐7f) to evaluate how they can differentiate hiPSCs to hepatocyte‐like cells (HLCs) without any extrinsic growth factor. Additionally, we studied the effect of Poly ɛ‐caprolactone‐gelatin‐hyaluronic acid (PCL‐Gel‐HA) nanofibrous scaffold as an extracellular matrix (ECM) simulator on differentiation improvement. Definitive endoderm markers (FOXA2 and SOX17), as well as hepatic markers (AFP, Albumin, CK18, HNF4α) expression, were significantly higher in hiPSCsmiR‐122 + off‐let‐7f derived HLCs (hiPSCs‐HLCs) compared to the control group (miR‐scramble transduced hiPSCs: hiPSCsscramble). hiPSCs‐HLCs indicated hepatocyte morphological characteristics and positive immunostaining for AFP, Albumin and HNF4α. Albumin and urea secretion were significantly higher in hiPSCs‐HLCs than hiPSCsscramble. Comparing these markers in the PCL‐Gel‐HA group with the tissue culture plate (TCP) group revealed that PCL‐Gel‐HA could improve differentiation towards HLCs significantly. Regarding our results, these microRNAs can be used to differentiate hiPSCs to the functional hepatocytes for disease modelling, drug screening and cell‐based therapy in future studies.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.17552</identifier><identifier>PMID: 36098216</identifier><language>eng</language><publisher>Chichester: John Wiley &amp; Sons, Inc</publisher><subject>Albumin ; Cell adhesion &amp; migration ; Cell culture ; Cell differentiation ; Cell growth ; Cell therapy ; Contact angle ; Drug screening ; Endoderm ; Extracellular matrix ; Fibroblasts ; Gelatin ; Gene expression ; Growth factors ; hepatic differentiation ; Hepatocytes ; Hyaluronic acid ; induced pluripotent stem cells ; let‐7f ; Liver ; Liver transplantation ; miRNA ; miR‐122 ; Morphology ; nanofibrous scaffold ; Original ; Physical characteristics ; Pluripotency ; Scanning electron microscopy ; Signal transduction ; Stem cells ; Tissue culture ; Tissue engineering</subject><ispartof>Journal of cellular and molecular medicine, 2022-10, Vol.26 (20), p.5235-5245</ispartof><rights>2022 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3142-a9bede09129768bccc19bab11497f75c07b1504366c8bddafa7b3080f0d8b7f73</cites><orcidid>0000-0003-0324-9808 ; 0000-0003-4820-8559 ; 0000-0002-3779-177X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575133/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575133/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids></links><search><creatorcontrib>Parvanak, Maliheh</creatorcontrib><creatorcontrib>Mostafavi‐Pour, Zohreh</creatorcontrib><creatorcontrib>Soleimani, Masoud</creatorcontrib><creatorcontrib>Atashi, Amir</creatorcontrib><creatorcontrib>Arefian, Ehsan</creatorcontrib><creatorcontrib>Esmaeili, Elaheh</creatorcontrib><title>Mir‐122 upregulation and let‐7f downregulation combination: The effects on hepatic differentiation of hiPSCs on the PCL‐Gel‐HA nanofibrous scaffold</title><title>Journal of cellular and molecular medicine</title><description>Cell therapy and tissue engineering as promising candidates for the liver transplantation dilemma are of special interest. Induced pluripotent stem cells (iPSCs) are one of the best sources in this field, but their differentiation methods to hepatocytes have remained challenging. We transduced human iPSCs (hiPSCs) with miR‐122 and off‐let‐7f (hiPSCsmiR‐122 + off‐let‐7f) to evaluate how they can differentiate hiPSCs to hepatocyte‐like cells (HLCs) without any extrinsic growth factor. Additionally, we studied the effect of Poly ɛ‐caprolactone‐gelatin‐hyaluronic acid (PCL‐Gel‐HA) nanofibrous scaffold as an extracellular matrix (ECM) simulator on differentiation improvement. Definitive endoderm markers (FOXA2 and SOX17), as well as hepatic markers (AFP, Albumin, CK18, HNF4α) expression, were significantly higher in hiPSCsmiR‐122 + off‐let‐7f derived HLCs (hiPSCs‐HLCs) compared to the control group (miR‐scramble transduced hiPSCs: hiPSCsscramble). hiPSCs‐HLCs indicated hepatocyte morphological characteristics and positive immunostaining for AFP, Albumin and HNF4α. Albumin and urea secretion were significantly higher in hiPSCs‐HLCs than hiPSCsscramble. Comparing these markers in the PCL‐Gel‐HA group with the tissue culture plate (TCP) group revealed that PCL‐Gel‐HA could improve differentiation towards HLCs significantly. Regarding our results, these microRNAs can be used to differentiate hiPSCs to the functional hepatocytes for disease modelling, drug screening and cell‐based therapy in future studies.</description><subject>Albumin</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell culture</subject><subject>Cell differentiation</subject><subject>Cell growth</subject><subject>Cell therapy</subject><subject>Contact angle</subject><subject>Drug screening</subject><subject>Endoderm</subject><subject>Extracellular matrix</subject><subject>Fibroblasts</subject><subject>Gelatin</subject><subject>Gene expression</subject><subject>Growth factors</subject><subject>hepatic differentiation</subject><subject>Hepatocytes</subject><subject>Hyaluronic acid</subject><subject>induced pluripotent stem cells</subject><subject>let‐7f</subject><subject>Liver</subject><subject>Liver transplantation</subject><subject>miRNA</subject><subject>miR‐122</subject><subject>Morphology</subject><subject>nanofibrous scaffold</subject><subject>Original</subject><subject>Physical characteristics</subject><subject>Pluripotency</subject><subject>Scanning electron microscopy</subject><subject>Signal transduction</subject><subject>Stem cells</subject><subject>Tissue culture</subject><subject>Tissue engineering</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kd9qFDEUxoMotlZvfIKAN1LYmj8zk8QLoQy2VXaxYL0OSSbpZplJ1mTG0rs-gve-nU9idmcR9cJcJId8v-_jHA4ALzE6w-W82ZhhOMOsrskjcIxrThaVoNXjQ4055UfgWc4bhGiDqXgKjmiDBCe4OQY_Vj79fPiOCYHTNtnbqVejjwGq0MHejkViDnbxLvyhmThoH_b1W3izttA6Z82YYdHWdlsEAztf_pINo5890cG1v_7c7qGxeK7bZQm_tH25r85hUCE6r1OcMsxGORf77jl44lSf7YvDewK-XLy_aa8Wy0-XH9rz5cJQXJGFEtp2FglMBGu4NsZgoZXGuBLMsdogpnGNKto0huuuU04xTRFHDnVcF4KegHdz7nbSg-1M6TqpXm6TH1S6l1F5-bcS_Frexm9S1KzGlJaA14eAFL9ONo9y8NnYvlfBloEkYbhCTUVIXdBX_6CbOKVQxisUqQliFd9RpzNlUsw5Wfe7GYzkbudyt3O533mB8Qzf-d7e_4eUH9vVavb8Ap3cs4c</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Parvanak, Maliheh</creator><creator>Mostafavi‐Pour, Zohreh</creator><creator>Soleimani, Masoud</creator><creator>Atashi, Amir</creator><creator>Arefian, Ehsan</creator><creator>Esmaeili, Elaheh</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0324-9808</orcidid><orcidid>https://orcid.org/0000-0003-4820-8559</orcidid><orcidid>https://orcid.org/0000-0002-3779-177X</orcidid></search><sort><creationdate>202210</creationdate><title>Mir‐122 upregulation and let‐7f downregulation combination: The effects on hepatic differentiation of hiPSCs on the PCL‐Gel‐HA nanofibrous scaffold</title><author>Parvanak, Maliheh ; Mostafavi‐Pour, Zohreh ; Soleimani, Masoud ; Atashi, Amir ; Arefian, Ehsan ; Esmaeili, Elaheh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3142-a9bede09129768bccc19bab11497f75c07b1504366c8bddafa7b3080f0d8b7f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Albumin</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell culture</topic><topic>Cell differentiation</topic><topic>Cell growth</topic><topic>Cell therapy</topic><topic>Contact angle</topic><topic>Drug screening</topic><topic>Endoderm</topic><topic>Extracellular matrix</topic><topic>Fibroblasts</topic><topic>Gelatin</topic><topic>Gene expression</topic><topic>Growth factors</topic><topic>hepatic differentiation</topic><topic>Hepatocytes</topic><topic>Hyaluronic acid</topic><topic>induced pluripotent stem cells</topic><topic>let‐7f</topic><topic>Liver</topic><topic>Liver transplantation</topic><topic>miRNA</topic><topic>miR‐122</topic><topic>Morphology</topic><topic>nanofibrous scaffold</topic><topic>Original</topic><topic>Physical characteristics</topic><topic>Pluripotency</topic><topic>Scanning electron microscopy</topic><topic>Signal transduction</topic><topic>Stem cells</topic><topic>Tissue culture</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parvanak, Maliheh</creatorcontrib><creatorcontrib>Mostafavi‐Pour, Zohreh</creatorcontrib><creatorcontrib>Soleimani, Masoud</creatorcontrib><creatorcontrib>Atashi, Amir</creatorcontrib><creatorcontrib>Arefian, Ehsan</creatorcontrib><creatorcontrib>Esmaeili, Elaheh</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parvanak, Maliheh</au><au>Mostafavi‐Pour, Zohreh</au><au>Soleimani, Masoud</au><au>Atashi, Amir</au><au>Arefian, Ehsan</au><au>Esmaeili, Elaheh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mir‐122 upregulation and let‐7f downregulation combination: The effects on hepatic differentiation of hiPSCs on the PCL‐Gel‐HA nanofibrous scaffold</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><date>2022-10</date><risdate>2022</risdate><volume>26</volume><issue>20</issue><spage>5235</spage><epage>5245</epage><pages>5235-5245</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Cell therapy and tissue engineering as promising candidates for the liver transplantation dilemma are of special interest. Induced pluripotent stem cells (iPSCs) are one of the best sources in this field, but their differentiation methods to hepatocytes have remained challenging. We transduced human iPSCs (hiPSCs) with miR‐122 and off‐let‐7f (hiPSCsmiR‐122 + off‐let‐7f) to evaluate how they can differentiate hiPSCs to hepatocyte‐like cells (HLCs) without any extrinsic growth factor. Additionally, we studied the effect of Poly ɛ‐caprolactone‐gelatin‐hyaluronic acid (PCL‐Gel‐HA) nanofibrous scaffold as an extracellular matrix (ECM) simulator on differentiation improvement. Definitive endoderm markers (FOXA2 and SOX17), as well as hepatic markers (AFP, Albumin, CK18, HNF4α) expression, were significantly higher in hiPSCsmiR‐122 + off‐let‐7f derived HLCs (hiPSCs‐HLCs) compared to the control group (miR‐scramble transduced hiPSCs: hiPSCsscramble). hiPSCs‐HLCs indicated hepatocyte morphological characteristics and positive immunostaining for AFP, Albumin and HNF4α. Albumin and urea secretion were significantly higher in hiPSCs‐HLCs than hiPSCsscramble. Comparing these markers in the PCL‐Gel‐HA group with the tissue culture plate (TCP) group revealed that PCL‐Gel‐HA could improve differentiation towards HLCs significantly. Regarding our results, these microRNAs can be used to differentiate hiPSCs to the functional hepatocytes for disease modelling, drug screening and cell‐based therapy in future studies.</abstract><cop>Chichester</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36098216</pmid><doi>10.1111/jcmm.17552</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0324-9808</orcidid><orcidid>https://orcid.org/0000-0003-4820-8559</orcidid><orcidid>https://orcid.org/0000-0002-3779-177X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2022-10, Vol.26 (20), p.5235-5245
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9575133
source Wiley Online Library - AutoHoldings Journals; DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Albumin
Cell adhesion & migration
Cell culture
Cell differentiation
Cell growth
Cell therapy
Contact angle
Drug screening
Endoderm
Extracellular matrix
Fibroblasts
Gelatin
Gene expression
Growth factors
hepatic differentiation
Hepatocytes
Hyaluronic acid
induced pluripotent stem cells
let‐7f
Liver
Liver transplantation
miRNA
miR‐122
Morphology
nanofibrous scaffold
Original
Physical characteristics
Pluripotency
Scanning electron microscopy
Signal transduction
Stem cells
Tissue culture
Tissue engineering
title Mir‐122 upregulation and let‐7f downregulation combination: The effects on hepatic differentiation of hiPSCs on the PCL‐Gel‐HA nanofibrous scaffold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mir%E2%80%90122%20upregulation%20and%20let%E2%80%907f%20downregulation%20combination:%20The%20effects%20on%20hepatic%20differentiation%20of%20hiPSCs%20on%20the%20PCL%E2%80%90Gel%E2%80%90HA%20nanofibrous%20scaffold&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Parvanak,%20Maliheh&rft.date=2022-10&rft.volume=26&rft.issue=20&rft.spage=5235&rft.epage=5245&rft.pages=5235-5245&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.17552&rft_dat=%3Cproquest_pubme%3E2714064225%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725207485&rft_id=info:pmid/36098216&rfr_iscdi=true