Optimization of Bobbin Tool Friction Stir Processing Parameters of AA1050 Using Response Surface Methodology

The current research designed a statistical model for the bobbin tool friction stir processing (BT-FSP) of AA1050 aluminum alloy using the Response Surface Method (RSM). The analysis studied the influence of tool travel speeds of 100, 200, and 300 mm/min and different pin geometries (triangle, squar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-10, Vol.15 (19), p.6886
Hauptverfasser: Albaijan, Ibrahim, Ahmed, Mohamed M Z, El-Sayed Seleman, Mohamed M, Touileb, Kamel, Habba, Mohamed I A, Fouad, Ramy A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 6886
container_title Materials
container_volume 15
creator Albaijan, Ibrahim
Ahmed, Mohamed M Z
El-Sayed Seleman, Mohamed M
Touileb, Kamel
Habba, Mohamed I A
Fouad, Ramy A
description The current research designed a statistical model for the bobbin tool friction stir processing (BT-FSP) of AA1050 aluminum alloy using the Response Surface Method (RSM). The analysis studied the influence of tool travel speeds of 100, 200, and 300 mm/min and different pin geometries (triangle, square, and cylindrical) at a constant tool rotation speed (RS) of 600 rpm on processing 8 mm thickness AA1050. The developed mathematical model optimizes the effect of the applied BT-FSP parameters on machine torque, processing zone (PZ) temperature, surface roughness, hardness values, and ultimate tensile strength (UTS). The experimental design is based on the Face Central Composite Design (FCCD), using linear and quadratic polynomial equations to develop the mathematical models. The results show that the proposed model adequately predicts the responses within the processing parameters, and the pin geometry is the most influential parameter during the BT-FSP of AA1050. The analysis of variance exhibit that the developed mathematical models can effectively predict the values of the machine torque, PZ temperature, surface roughness, hardness, and UTS with a confidence level of over 95% for the AA1050 BT-FSP. The optimization process shows that the optimum parameters to attain the highest mechanical properties in terms of hardness and tensile strength at the lowest surface roughness and machine torque are travel speed (TS) of 200 mm/min using cylindrical (Cy) pin geometry at the constant RS of 600 rpm. The PZ temperature of the processed specimens decreased with increasing TS at different pin geometries. Meanwhile, the surface roughness of the processed passes and machine torque increased with increasing the TS at different pin geometries. Increasing TS from 100 to 300 mm/min increases the hardness values of the processed materials using different pin geometries. The highest UTS of 79 MPa for the processed specimens was attained at the TS of 200 mm/min and RS of 600 rpm using the Cy pin geometry.
doi_str_mv 10.3390/ma15196886
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9573445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745740139</galeid><sourcerecordid>A745740139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-5697a3c322e5307b08eafecba1a6b9e21e482b8ff5cae44b92b8bd14d85198223</originalsourceid><addsrcrecordid>eNpdkd9PFDEQxzdEIwR58Q8gTXwxJgf9ud2-mBxE1AQDEXhu2u70KNltz3bXBP96exwC2j50OvOZ73Q6TfOO4CPGFD4eDRFEtV3X7jR7RKl2QRTnr17Yu81BKXe4LsZIR9WbZpe1lHFK5V4zXKynMIbfZgopouTRSbI2RHSd0oDOcnAP_qspZHSZk4NSQlyhS5PNCBPksklZLgkWGN08hH5AWadYAF3N2RsH6DtMt6lPQ1rdv21eezMUOHg895ubs8_Xp18X5xdfvp0uzxeOSTEtRKukYY5RCoJhaXEHxoOzhpjWKqAEeEdt571wBji3ql5sT3jf1Z_oKGX7zaet7nq2I_QO4pTNoNc5jCbf62SC_jcSw61epV9aCck4F1Xgw6NATj9nKJMeQ3EwDCZCmoumktZSAgtV0ff_oXdpzrG2t6E4lS3FXaWOttTKDKBD9KnWdXX3MAaXIvhQ_UvJheSYsI3sx22Cy6mUDP7p9QTrzeD18-ArfPiy3yf075jZH87ZqKM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724276208</pqid></control><display><type>article</type><title>Optimization of Bobbin Tool Friction Stir Processing Parameters of AA1050 Using Response Surface Methodology</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Albaijan, Ibrahim ; Ahmed, Mohamed M Z ; El-Sayed Seleman, Mohamed M ; Touileb, Kamel ; Habba, Mohamed I A ; Fouad, Ramy A</creator><creatorcontrib>Albaijan, Ibrahim ; Ahmed, Mohamed M Z ; El-Sayed Seleman, Mohamed M ; Touileb, Kamel ; Habba, Mohamed I A ; Fouad, Ramy A</creatorcontrib><description>The current research designed a statistical model for the bobbin tool friction stir processing (BT-FSP) of AA1050 aluminum alloy using the Response Surface Method (RSM). The analysis studied the influence of tool travel speeds of 100, 200, and 300 mm/min and different pin geometries (triangle, square, and cylindrical) at a constant tool rotation speed (RS) of 600 rpm on processing 8 mm thickness AA1050. The developed mathematical model optimizes the effect of the applied BT-FSP parameters on machine torque, processing zone (PZ) temperature, surface roughness, hardness values, and ultimate tensile strength (UTS). The experimental design is based on the Face Central Composite Design (FCCD), using linear and quadratic polynomial equations to develop the mathematical models. The results show that the proposed model adequately predicts the responses within the processing parameters, and the pin geometry is the most influential parameter during the BT-FSP of AA1050. The analysis of variance exhibit that the developed mathematical models can effectively predict the values of the machine torque, PZ temperature, surface roughness, hardness, and UTS with a confidence level of over 95% for the AA1050 BT-FSP. The optimization process shows that the optimum parameters to attain the highest mechanical properties in terms of hardness and tensile strength at the lowest surface roughness and machine torque are travel speed (TS) of 200 mm/min using cylindrical (Cy) pin geometry at the constant RS of 600 rpm. The PZ temperature of the processed specimens decreased with increasing TS at different pin geometries. Meanwhile, the surface roughness of the processed passes and machine torque increased with increasing the TS at different pin geometries. Increasing TS from 100 to 300 mm/min increases the hardness values of the processed materials using different pin geometries. The highest UTS of 79 MPa for the processed specimens was attained at the TS of 200 mm/min and RS of 600 rpm using the Cy pin geometry.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15196886</identifier><identifier>PMID: 36234227</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Aluminum alloys ; Aluminum base alloys ; Composite materials ; Confidence intervals ; Design of experiments ; Friction stir processing ; Friction stir welding ; Hardness ; Mechanical properties ; Methods ; Optimization ; Polynomials ; Powder metallurgy ; Process parameters ; Quadratic equations ; Response surface methodology ; Spools ; Statistical analysis ; Statistical models ; Surface roughness ; Tensile strength ; Torque ; Triangles ; Ultimate tensile strength ; Variables ; Variance analysis</subject><ispartof>Materials, 2022-10, Vol.15 (19), p.6886</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-5697a3c322e5307b08eafecba1a6b9e21e482b8ff5cae44b92b8bd14d85198223</citedby><cites>FETCH-LOGICAL-c375t-5697a3c322e5307b08eafecba1a6b9e21e482b8ff5cae44b92b8bd14d85198223</cites><orcidid>0000-0002-9550-7431 ; 0000-0001-7311-3653 ; 0000-0002-6836-3874 ; 0000-0003-0902-9603 ; 0000-0002-7298-1667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573445/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573445/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36234227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Albaijan, Ibrahim</creatorcontrib><creatorcontrib>Ahmed, Mohamed M Z</creatorcontrib><creatorcontrib>El-Sayed Seleman, Mohamed M</creatorcontrib><creatorcontrib>Touileb, Kamel</creatorcontrib><creatorcontrib>Habba, Mohamed I A</creatorcontrib><creatorcontrib>Fouad, Ramy A</creatorcontrib><title>Optimization of Bobbin Tool Friction Stir Processing Parameters of AA1050 Using Response Surface Methodology</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The current research designed a statistical model for the bobbin tool friction stir processing (BT-FSP) of AA1050 aluminum alloy using the Response Surface Method (RSM). The analysis studied the influence of tool travel speeds of 100, 200, and 300 mm/min and different pin geometries (triangle, square, and cylindrical) at a constant tool rotation speed (RS) of 600 rpm on processing 8 mm thickness AA1050. The developed mathematical model optimizes the effect of the applied BT-FSP parameters on machine torque, processing zone (PZ) temperature, surface roughness, hardness values, and ultimate tensile strength (UTS). The experimental design is based on the Face Central Composite Design (FCCD), using linear and quadratic polynomial equations to develop the mathematical models. The results show that the proposed model adequately predicts the responses within the processing parameters, and the pin geometry is the most influential parameter during the BT-FSP of AA1050. The analysis of variance exhibit that the developed mathematical models can effectively predict the values of the machine torque, PZ temperature, surface roughness, hardness, and UTS with a confidence level of over 95% for the AA1050 BT-FSP. The optimization process shows that the optimum parameters to attain the highest mechanical properties in terms of hardness and tensile strength at the lowest surface roughness and machine torque are travel speed (TS) of 200 mm/min using cylindrical (Cy) pin geometry at the constant RS of 600 rpm. The PZ temperature of the processed specimens decreased with increasing TS at different pin geometries. Meanwhile, the surface roughness of the processed passes and machine torque increased with increasing the TS at different pin geometries. Increasing TS from 100 to 300 mm/min increases the hardness values of the processed materials using different pin geometries. The highest UTS of 79 MPa for the processed specimens was attained at the TS of 200 mm/min and RS of 600 rpm using the Cy pin geometry.</description><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Composite materials</subject><subject>Confidence intervals</subject><subject>Design of experiments</subject><subject>Friction stir processing</subject><subject>Friction stir welding</subject><subject>Hardness</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Powder metallurgy</subject><subject>Process parameters</subject><subject>Quadratic equations</subject><subject>Response surface methodology</subject><subject>Spools</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Surface roughness</subject><subject>Tensile strength</subject><subject>Torque</subject><subject>Triangles</subject><subject>Ultimate tensile strength</subject><subject>Variables</subject><subject>Variance analysis</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkd9PFDEQxzdEIwR58Q8gTXwxJgf9ud2-mBxE1AQDEXhu2u70KNltz3bXBP96exwC2j50OvOZ73Q6TfOO4CPGFD4eDRFEtV3X7jR7RKl2QRTnr17Yu81BKXe4LsZIR9WbZpe1lHFK5V4zXKynMIbfZgopouTRSbI2RHSd0oDOcnAP_qspZHSZk4NSQlyhS5PNCBPksklZLgkWGN08hH5AWadYAF3N2RsH6DtMt6lPQ1rdv21eezMUOHg895ubs8_Xp18X5xdfvp0uzxeOSTEtRKukYY5RCoJhaXEHxoOzhpjWKqAEeEdt571wBji3ql5sT3jf1Z_oKGX7zaet7nq2I_QO4pTNoNc5jCbf62SC_jcSw61epV9aCck4F1Xgw6NATj9nKJMeQ3EwDCZCmoumktZSAgtV0ff_oXdpzrG2t6E4lS3FXaWOttTKDKBD9KnWdXX3MAaXIvhQ_UvJheSYsI3sx22Cy6mUDP7p9QTrzeD18-ArfPiy3yf075jZH87ZqKM</recordid><startdate>20221004</startdate><enddate>20221004</enddate><creator>Albaijan, Ibrahim</creator><creator>Ahmed, Mohamed M Z</creator><creator>El-Sayed Seleman, Mohamed M</creator><creator>Touileb, Kamel</creator><creator>Habba, Mohamed I A</creator><creator>Fouad, Ramy A</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9550-7431</orcidid><orcidid>https://orcid.org/0000-0001-7311-3653</orcidid><orcidid>https://orcid.org/0000-0002-6836-3874</orcidid><orcidid>https://orcid.org/0000-0003-0902-9603</orcidid><orcidid>https://orcid.org/0000-0002-7298-1667</orcidid></search><sort><creationdate>20221004</creationdate><title>Optimization of Bobbin Tool Friction Stir Processing Parameters of AA1050 Using Response Surface Methodology</title><author>Albaijan, Ibrahim ; Ahmed, Mohamed M Z ; El-Sayed Seleman, Mohamed M ; Touileb, Kamel ; Habba, Mohamed I A ; Fouad, Ramy A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-5697a3c322e5307b08eafecba1a6b9e21e482b8ff5cae44b92b8bd14d85198223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Composite materials</topic><topic>Confidence intervals</topic><topic>Design of experiments</topic><topic>Friction stir processing</topic><topic>Friction stir welding</topic><topic>Hardness</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Powder metallurgy</topic><topic>Process parameters</topic><topic>Quadratic equations</topic><topic>Response surface methodology</topic><topic>Spools</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Surface roughness</topic><topic>Tensile strength</topic><topic>Torque</topic><topic>Triangles</topic><topic>Ultimate tensile strength</topic><topic>Variables</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albaijan, Ibrahim</creatorcontrib><creatorcontrib>Ahmed, Mohamed M Z</creatorcontrib><creatorcontrib>El-Sayed Seleman, Mohamed M</creatorcontrib><creatorcontrib>Touileb, Kamel</creatorcontrib><creatorcontrib>Habba, Mohamed I A</creatorcontrib><creatorcontrib>Fouad, Ramy A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albaijan, Ibrahim</au><au>Ahmed, Mohamed M Z</au><au>El-Sayed Seleman, Mohamed M</au><au>Touileb, Kamel</au><au>Habba, Mohamed I A</au><au>Fouad, Ramy A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Bobbin Tool Friction Stir Processing Parameters of AA1050 Using Response Surface Methodology</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-10-04</date><risdate>2022</risdate><volume>15</volume><issue>19</issue><spage>6886</spage><pages>6886-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The current research designed a statistical model for the bobbin tool friction stir processing (BT-FSP) of AA1050 aluminum alloy using the Response Surface Method (RSM). The analysis studied the influence of tool travel speeds of 100, 200, and 300 mm/min and different pin geometries (triangle, square, and cylindrical) at a constant tool rotation speed (RS) of 600 rpm on processing 8 mm thickness AA1050. The developed mathematical model optimizes the effect of the applied BT-FSP parameters on machine torque, processing zone (PZ) temperature, surface roughness, hardness values, and ultimate tensile strength (UTS). The experimental design is based on the Face Central Composite Design (FCCD), using linear and quadratic polynomial equations to develop the mathematical models. The results show that the proposed model adequately predicts the responses within the processing parameters, and the pin geometry is the most influential parameter during the BT-FSP of AA1050. The analysis of variance exhibit that the developed mathematical models can effectively predict the values of the machine torque, PZ temperature, surface roughness, hardness, and UTS with a confidence level of over 95% for the AA1050 BT-FSP. The optimization process shows that the optimum parameters to attain the highest mechanical properties in terms of hardness and tensile strength at the lowest surface roughness and machine torque are travel speed (TS) of 200 mm/min using cylindrical (Cy) pin geometry at the constant RS of 600 rpm. The PZ temperature of the processed specimens decreased with increasing TS at different pin geometries. Meanwhile, the surface roughness of the processed passes and machine torque increased with increasing the TS at different pin geometries. Increasing TS from 100 to 300 mm/min increases the hardness values of the processed materials using different pin geometries. The highest UTS of 79 MPa for the processed specimens was attained at the TS of 200 mm/min and RS of 600 rpm using the Cy pin geometry.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36234227</pmid><doi>10.3390/ma15196886</doi><orcidid>https://orcid.org/0000-0002-9550-7431</orcidid><orcidid>https://orcid.org/0000-0001-7311-3653</orcidid><orcidid>https://orcid.org/0000-0002-6836-3874</orcidid><orcidid>https://orcid.org/0000-0003-0902-9603</orcidid><orcidid>https://orcid.org/0000-0002-7298-1667</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-10, Vol.15 (19), p.6886
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9573445
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Alloys
Aluminum alloys
Aluminum base alloys
Composite materials
Confidence intervals
Design of experiments
Friction stir processing
Friction stir welding
Hardness
Mechanical properties
Methods
Optimization
Polynomials
Powder metallurgy
Process parameters
Quadratic equations
Response surface methodology
Spools
Statistical analysis
Statistical models
Surface roughness
Tensile strength
Torque
Triangles
Ultimate tensile strength
Variables
Variance analysis
title Optimization of Bobbin Tool Friction Stir Processing Parameters of AA1050 Using Response Surface Methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Bobbin%20Tool%20Friction%20Stir%20Processing%20Parameters%20of%20AA1050%20Using%20Response%20Surface%20Methodology&rft.jtitle=Materials&rft.au=Albaijan,%20Ibrahim&rft.date=2022-10-04&rft.volume=15&rft.issue=19&rft.spage=6886&rft.pages=6886-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15196886&rft_dat=%3Cgale_pubme%3EA745740139%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724276208&rft_id=info:pmid/36234227&rft_galeid=A745740139&rfr_iscdi=true