{332} and {112} Twin Variant Activation during Cold-Rolling of a Ti-Nb-Zr-Ta-Sn-Fe Alloy
Deformation twinning is a phenomenon that causes local shear strain concentrations, with the material either experiencing elongation (and thus a tensile stress) or contraction (compressive stress) along the stress directions. Thus, in order to gauge the performance of the alloy better, it is imperat...
Gespeichert in:
Veröffentlicht in: | Materials 2022-10, Vol.15 (19), p.6932 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 6932 |
container_title | Materials |
container_volume | 15 |
creator | Dan, Alexandru Cojocaru, Elisabeta Mirela Raducanu, Doina Nocivin, Anna Cinca, Ion Cojocaru, Vasile Danut |
description | Deformation twinning is a phenomenon that causes local shear strain concentrations, with the material either experiencing elongation (and thus a tensile stress) or contraction (compressive stress) along the stress directions. Thus, in order to gauge the performance of the alloy better, it is imperative to predict the activation of twinning systems successfully. The present study investigates the effects of deformation by cold-rolling on the {332} and {112} twin variant activation in a Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) (TNZTSF) alloy. The Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) alloy was synthesized in a cold crucible induction levitation furnace, under an argon-controlled atmosphere, using high-purity elemental components. The TNZTSF alloy was cold-deformed by rolling, in one single step, with a total deformation degree (thickness reduction) of ε ≈ 1% (CR 1), ε ≈ 3% (CR 3), and ε ≈ 15% (CR 15). The microstructural investigations were carried out with the SEM-EBSD technique in order to determine the grain morphology, grain-size distribution, crystallographic orientation, accumulated strain-stress fields and Schmid Factor (SF) analysis, all necessary to identify the active twin variants. The EBSD data were processed using an MTEX Toolbox ver. 5.7.0 software package. The results indicated that the TNZTSF alloy’s initial microstructure consists of a homogeneous β-Ti single phase that exhibits equiaxed polyhedral grains and an average grain-size close to 71 μm. It was shown that even starting with a 1% total deformation degree, the microstructure shows the presence of the {332} twinning ((233)[3¯11] active twin variant; Schmit factor SF = −0.487); at a 3% total deformation degree, one can notice the presence of primary and secondary twin variants within the same grain belonging to the same {332} twinning system ((323¯)[13¯1¯] primary twin variant—SF = −0.460; (233¯)[3¯11¯] secondary twin variant—SF = −0.451), while, at a 15% total deformation degree, besides the {332} twinning system, one can notice the activation of the {112} twinning system ((11¯2)[1¯11] active twin variant—SF = −0.440). This study shows the {332} and {112} twinning variant activation during cold-deformation by rolling in the case of a Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) (TNZTSF) alloy. |
doi_str_mv | 10.3390/ma15196932 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9573394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724275397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3212-4c12c1141b7e356c0540cded6c3bb12890f2806fb9dbf75c841f6ed4063929da3</originalsourceid><addsrcrecordid>eNpdkV9LHTEQxUNRqlhf-gFKwBcRYpNM9k9ehMtFW0Fa0KtIX0I2ydpIbqLZXUWk391ctNaal8wwPw4z5yD0mdF9AEm_LjWrmKwl8A9ok0lZEyaFWHtTb6DtYbim5QGwlsuPaANqDoI3sIkuHwH4H6yjxY-MlWpx7yO-0NnrOOKZGf2dHn2K2E7Zxys8T8GS0xTCqkk91njhyY-O_MpkoclZJEcOz0JID5_Qeq_D4LZf_i10fnS4mH8nJz-_Hc9nJ8QAZ5wIw7hhTLCucVDVhlaCGutsbaDrGG8l7XlL676TtuubyrSC9bWzgtYgubQattDBs-7N1C2dNS6OWQd1k_1S5weVtFf_T6L_ra7SnZJVUwwURWD3RSCn28kNo1r6wbgQdHRpGhRveDG4olVb0J136HWaciznrahiaAWyKdTeM2VyGobs-tdlGFWrzNS_zAr85e36r-jfhOAJQTGOgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724275397</pqid></control><display><type>article</type><title>{332} and {112} Twin Variant Activation during Cold-Rolling of a Ti-Nb-Zr-Ta-Sn-Fe Alloy</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dan, Alexandru ; Cojocaru, Elisabeta Mirela ; Raducanu, Doina ; Nocivin, Anna ; Cinca, Ion ; Cojocaru, Vasile Danut</creator><creatorcontrib>Dan, Alexandru ; Cojocaru, Elisabeta Mirela ; Raducanu, Doina ; Nocivin, Anna ; Cinca, Ion ; Cojocaru, Vasile Danut</creatorcontrib><description>Deformation twinning is a phenomenon that causes local shear strain concentrations, with the material either experiencing elongation (and thus a tensile stress) or contraction (compressive stress) along the stress directions. Thus, in order to gauge the performance of the alloy better, it is imperative to predict the activation of twinning systems successfully. The present study investigates the effects of deformation by cold-rolling on the {332} and {112} twin variant activation in a Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) (TNZTSF) alloy. The Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) alloy was synthesized in a cold crucible induction levitation furnace, under an argon-controlled atmosphere, using high-purity elemental components. The TNZTSF alloy was cold-deformed by rolling, in one single step, with a total deformation degree (thickness reduction) of ε ≈ 1% (CR 1), ε ≈ 3% (CR 3), and ε ≈ 15% (CR 15). The microstructural investigations were carried out with the SEM-EBSD technique in order to determine the grain morphology, grain-size distribution, crystallographic orientation, accumulated strain-stress fields and Schmid Factor (SF) analysis, all necessary to identify the active twin variants. The EBSD data were processed using an MTEX Toolbox ver. 5.7.0 software package. The results indicated that the TNZTSF alloy’s initial microstructure consists of a homogeneous β-Ti single phase that exhibits equiaxed polyhedral grains and an average grain-size close to 71 μm. It was shown that even starting with a 1% total deformation degree, the microstructure shows the presence of the {332} twinning ((233)[3¯11] active twin variant; Schmit factor SF = −0.487); at a 3% total deformation degree, one can notice the presence of primary and secondary twin variants within the same grain belonging to the same {332} twinning system ((323¯)[13¯1¯] primary twin variant—SF = −0.460; (233¯)[3¯11¯] secondary twin variant—SF = −0.451), while, at a 15% total deformation degree, besides the {332} twinning system, one can notice the activation of the {112} twinning system ((11¯2)[1¯11] active twin variant—SF = −0.440). This study shows the {332} and {112} twinning variant activation during cold-deformation by rolling in the case of a Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) (TNZTSF) alloy.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15196932</identifier><identifier>PMID: 36234273</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Argon ; Cold ; Cold rolling ; Compressive properties ; Crucible furnaces ; Crystallography ; Deformation ; Deformation effects ; Elongation ; Ferrous alloys ; Grain size distribution ; Investigations ; Iron ; Levitation ; Mechanical properties ; Microstructure ; Morphology ; Niobium ; Shear strain ; Stress distribution ; Tensile strength ; Tensile stress ; Titanium alloys ; Titanium base alloys ; Twinning ; Zirconium</subject><ispartof>Materials, 2022-10, Vol.15 (19), p.6932</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3212-4c12c1141b7e356c0540cded6c3bb12890f2806fb9dbf75c841f6ed4063929da3</citedby><cites>FETCH-LOGICAL-c3212-4c12c1141b7e356c0540cded6c3bb12890f2806fb9dbf75c841f6ed4063929da3</cites><orcidid>0000-0003-1081-0026 ; 0000-0001-8563-2952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573394/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573394/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36234273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dan, Alexandru</creatorcontrib><creatorcontrib>Cojocaru, Elisabeta Mirela</creatorcontrib><creatorcontrib>Raducanu, Doina</creatorcontrib><creatorcontrib>Nocivin, Anna</creatorcontrib><creatorcontrib>Cinca, Ion</creatorcontrib><creatorcontrib>Cojocaru, Vasile Danut</creatorcontrib><title>{332} and {112} Twin Variant Activation during Cold-Rolling of a Ti-Nb-Zr-Ta-Sn-Fe Alloy</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Deformation twinning is a phenomenon that causes local shear strain concentrations, with the material either experiencing elongation (and thus a tensile stress) or contraction (compressive stress) along the stress directions. Thus, in order to gauge the performance of the alloy better, it is imperative to predict the activation of twinning systems successfully. The present study investigates the effects of deformation by cold-rolling on the {332} and {112} twin variant activation in a Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) (TNZTSF) alloy. The Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) alloy was synthesized in a cold crucible induction levitation furnace, under an argon-controlled atmosphere, using high-purity elemental components. The TNZTSF alloy was cold-deformed by rolling, in one single step, with a total deformation degree (thickness reduction) of ε ≈ 1% (CR 1), ε ≈ 3% (CR 3), and ε ≈ 15% (CR 15). The microstructural investigations were carried out with the SEM-EBSD technique in order to determine the grain morphology, grain-size distribution, crystallographic orientation, accumulated strain-stress fields and Schmid Factor (SF) analysis, all necessary to identify the active twin variants. The EBSD data were processed using an MTEX Toolbox ver. 5.7.0 software package. The results indicated that the TNZTSF alloy’s initial microstructure consists of a homogeneous β-Ti single phase that exhibits equiaxed polyhedral grains and an average grain-size close to 71 μm. It was shown that even starting with a 1% total deformation degree, the microstructure shows the presence of the {332} twinning ((233)[3¯11] active twin variant; Schmit factor SF = −0.487); at a 3% total deformation degree, one can notice the presence of primary and secondary twin variants within the same grain belonging to the same {332} twinning system ((323¯)[13¯1¯] primary twin variant—SF = −0.460; (233¯)[3¯11¯] secondary twin variant—SF = −0.451), while, at a 15% total deformation degree, besides the {332} twinning system, one can notice the activation of the {112} twinning system ((11¯2)[1¯11] active twin variant—SF = −0.440). This study shows the {332} and {112} twinning variant activation during cold-deformation by rolling in the case of a Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) (TNZTSF) alloy.</description><subject>Argon</subject><subject>Cold</subject><subject>Cold rolling</subject><subject>Compressive properties</subject><subject>Crucible furnaces</subject><subject>Crystallography</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Elongation</subject><subject>Ferrous alloys</subject><subject>Grain size distribution</subject><subject>Investigations</subject><subject>Iron</subject><subject>Levitation</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Niobium</subject><subject>Shear strain</subject><subject>Stress distribution</subject><subject>Tensile strength</subject><subject>Tensile stress</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Twinning</subject><subject>Zirconium</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV9LHTEQxUNRqlhf-gFKwBcRYpNM9k9ehMtFW0Fa0KtIX0I2ydpIbqLZXUWk391ctNaal8wwPw4z5yD0mdF9AEm_LjWrmKwl8A9ok0lZEyaFWHtTb6DtYbim5QGwlsuPaANqDoI3sIkuHwH4H6yjxY-MlWpx7yO-0NnrOOKZGf2dHn2K2E7Zxys8T8GS0xTCqkk91njhyY-O_MpkoclZJEcOz0JID5_Qeq_D4LZf_i10fnS4mH8nJz-_Hc9nJ8QAZ5wIw7hhTLCucVDVhlaCGutsbaDrGG8l7XlL676TtuubyrSC9bWzgtYgubQattDBs-7N1C2dNS6OWQd1k_1S5weVtFf_T6L_ra7SnZJVUwwURWD3RSCn28kNo1r6wbgQdHRpGhRveDG4olVb0J136HWaciznrahiaAWyKdTeM2VyGobs-tdlGFWrzNS_zAr85e36r-jfhOAJQTGOgw</recordid><startdate>20221006</startdate><enddate>20221006</enddate><creator>Dan, Alexandru</creator><creator>Cojocaru, Elisabeta Mirela</creator><creator>Raducanu, Doina</creator><creator>Nocivin, Anna</creator><creator>Cinca, Ion</creator><creator>Cojocaru, Vasile Danut</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1081-0026</orcidid><orcidid>https://orcid.org/0000-0001-8563-2952</orcidid></search><sort><creationdate>20221006</creationdate><title>{332} and {112} Twin Variant Activation during Cold-Rolling of a Ti-Nb-Zr-Ta-Sn-Fe Alloy</title><author>Dan, Alexandru ; Cojocaru, Elisabeta Mirela ; Raducanu, Doina ; Nocivin, Anna ; Cinca, Ion ; Cojocaru, Vasile Danut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3212-4c12c1141b7e356c0540cded6c3bb12890f2806fb9dbf75c841f6ed4063929da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Argon</topic><topic>Cold</topic><topic>Cold rolling</topic><topic>Compressive properties</topic><topic>Crucible furnaces</topic><topic>Crystallography</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Elongation</topic><topic>Ferrous alloys</topic><topic>Grain size distribution</topic><topic>Investigations</topic><topic>Iron</topic><topic>Levitation</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Niobium</topic><topic>Shear strain</topic><topic>Stress distribution</topic><topic>Tensile strength</topic><topic>Tensile stress</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Twinning</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dan, Alexandru</creatorcontrib><creatorcontrib>Cojocaru, Elisabeta Mirela</creatorcontrib><creatorcontrib>Raducanu, Doina</creatorcontrib><creatorcontrib>Nocivin, Anna</creatorcontrib><creatorcontrib>Cinca, Ion</creatorcontrib><creatorcontrib>Cojocaru, Vasile Danut</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dan, Alexandru</au><au>Cojocaru, Elisabeta Mirela</au><au>Raducanu, Doina</au><au>Nocivin, Anna</au><au>Cinca, Ion</au><au>Cojocaru, Vasile Danut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>{332} and {112} Twin Variant Activation during Cold-Rolling of a Ti-Nb-Zr-Ta-Sn-Fe Alloy</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-10-06</date><risdate>2022</risdate><volume>15</volume><issue>19</issue><spage>6932</spage><pages>6932-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Deformation twinning is a phenomenon that causes local shear strain concentrations, with the material either experiencing elongation (and thus a tensile stress) or contraction (compressive stress) along the stress directions. Thus, in order to gauge the performance of the alloy better, it is imperative to predict the activation of twinning systems successfully. The present study investigates the effects of deformation by cold-rolling on the {332} and {112} twin variant activation in a Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) (TNZTSF) alloy. The Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) alloy was synthesized in a cold crucible induction levitation furnace, under an argon-controlled atmosphere, using high-purity elemental components. The TNZTSF alloy was cold-deformed by rolling, in one single step, with a total deformation degree (thickness reduction) of ε ≈ 1% (CR 1), ε ≈ 3% (CR 3), and ε ≈ 15% (CR 15). The microstructural investigations were carried out with the SEM-EBSD technique in order to determine the grain morphology, grain-size distribution, crystallographic orientation, accumulated strain-stress fields and Schmid Factor (SF) analysis, all necessary to identify the active twin variants. The EBSD data were processed using an MTEX Toolbox ver. 5.7.0 software package. The results indicated that the TNZTSF alloy’s initial microstructure consists of a homogeneous β-Ti single phase that exhibits equiaxed polyhedral grains and an average grain-size close to 71 μm. It was shown that even starting with a 1% total deformation degree, the microstructure shows the presence of the {332} twinning ((233)[3¯11] active twin variant; Schmit factor SF = −0.487); at a 3% total deformation degree, one can notice the presence of primary and secondary twin variants within the same grain belonging to the same {332} twinning system ((323¯)[13¯1¯] primary twin variant—SF = −0.460; (233¯)[3¯11¯] secondary twin variant—SF = −0.451), while, at a 15% total deformation degree, besides the {332} twinning system, one can notice the activation of the {112} twinning system ((11¯2)[1¯11] active twin variant—SF = −0.440). This study shows the {332} and {112} twinning variant activation during cold-deformation by rolling in the case of a Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) (TNZTSF) alloy.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36234273</pmid><doi>10.3390/ma15196932</doi><orcidid>https://orcid.org/0000-0003-1081-0026</orcidid><orcidid>https://orcid.org/0000-0001-8563-2952</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-10, Vol.15 (19), p.6932 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9573394 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Argon Cold Cold rolling Compressive properties Crucible furnaces Crystallography Deformation Deformation effects Elongation Ferrous alloys Grain size distribution Investigations Iron Levitation Mechanical properties Microstructure Morphology Niobium Shear strain Stress distribution Tensile strength Tensile stress Titanium alloys Titanium base alloys Twinning Zirconium |
title | {332} and {112} Twin Variant Activation during Cold-Rolling of a Ti-Nb-Zr-Ta-Sn-Fe Alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%7B332%7D%20and%20%7B112%7D%20Twin%20Variant%20Activation%20during%20Cold-Rolling%20of%20a%20Ti-Nb-Zr-Ta-Sn-Fe%20Alloy&rft.jtitle=Materials&rft.au=Dan,%20Alexandru&rft.date=2022-10-06&rft.volume=15&rft.issue=19&rft.spage=6932&rft.pages=6932-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15196932&rft_dat=%3Cproquest_pubme%3E2724275397%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724275397&rft_id=info:pmid/36234273&rfr_iscdi=true |