Response Surface Methodology Based Optimization of Test Parameter in Glass Fiber Reinforced Polyamide 66 for Dry Sliding, Tribological Performance
The tribological performance of a glass fiber reinforced polyamide66 (GFRPA66) composite with varying fiber weight percentage (wt.%) [30 wt.% and 35 wt.%] is investigated in this study using a pin-on-disc tribometer. GFRPA66 composite specimens in the form of pins with varying percentages of fiber v...
Gespeichert in:
Veröffentlicht in: | Materials 2022-09, Vol.15 (19), p.6520 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 6520 |
container_title | Materials |
container_volume | 15 |
creator | Jagadeesan, Narendran Selvaraj, Anthoniraj Nagaraja, Santhosh Abbas, Mohamed Saleel, C. Ahamed Aabid, Abdul Baig, Muneer |
description | The tribological performance of a glass fiber reinforced polyamide66 (GFRPA66) composite with varying fiber weight percentage (wt.%) [30 wt.% and 35 wt.%] is investigated in this study using a pin-on-disc tribometer. GFRPA66 composite specimens in the form of pins with varying percentages of fiber viz., 30 wt.% and 35 wt.% are fabricated by an injection molding process. Tribological performances, such as coefficient of friction (COF) and the specific wear rate (SWR), are investigated. The factors affecting the wear of GFRPA66 composites [with 30 wt.% and 35 wt.% reinforcements] are identified based on the process parameters such as load, sliding velocity, and sliding distance. Design Expert 13.0 software is used for the experimental data analysis, based on the design of experiments planned in accordance with the central composite design (CCD) of the response surface methodology (RSM) technique. The significance of the obtained results are analyzed using analysis of variance (ANOVA) techniques. To attain minimum SWR and COF, the wear performance is optimized in dry sliding conditions. The analysis of experimental data revealed that SWR and COF increased with increasing load, sliding velocity, and sliding distance for GFRPA66 [30 wt.%], but decreased with increasing polyamide weight percentage. The SWR for a maximum load of 80 N, and for a sliding velocity of 0.22 m/s, and a sliding distance of 3500 m for GFRPA66 composite specimens with 30 wt.% reinforcements are found to be 0.0121 m3/Nm, while the SWR for the same set of parameters for GFRPA66 composite specimens with 35 wt.% reinforcements are found to be 0.0102 m3/Nm. The COF for the GFRPA66 composite specimens with 30 wt.% reinforcements for the above set of parameters is found to be 0.37, while the GFRPA66 composite specimens with 35 wt.% reinforcements showed significant improvement in wear performance with a reduction in COF to 0.25. Finally, using a scanning electron microscope (SEM), the worn surfaces of the GFRPA66 are examined and interpreted. |
doi_str_mv | 10.3390/ma15196520 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9573062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745739829</galeid><sourcerecordid>A745739829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-24101b8a8df1f16f8b9975421ff6d27d1a49451bf730bdd1a44f58852b25e7793</originalsourceid><addsrcrecordid>eNpdkl9vFCEQwInR2Obsi5-AxBdjvLr8211eTGq11aSml_Z8JiwMVxoWrrBncn4MP7FsrvEfPDAz_GYGZgahl6Q5ZUw270ZNBJGtoM0TdEykbJdEcv70L_kInZRy39TFGOmpfI6OWEsZ61t6jH7eQNmmWADf7rLTBvBXmO6STSFt9viDLmDx9Xbyo_-hJ58iTg6voUx4pbMeYYKMfcSXQZeCL_xQ1Rvw0aVsquMqhb0evQXctrja8Me8x7fBWx83b_E6-2FO440OeAW5AqOOBl6gZ06HAieP5wJ9u_i0Pv-8vLq-_HJ-drU0nNJpSTlpyNDr3jriSOv6QcpOcEqcay3tLNFcckEG17FmsLPKneh7QQcqoOskW6D3h7jb3TCCNRCnrIPaZj_qvFdJe_XvTfR3apO-KylqyFrBBXr9GCCnh10tihp9MRCCjpB2RdGO1tYITnhFX_2H3qddjvV7M8Vpx0U3U6cHaqMDqLmMNa-p28LoTYrgfLWfzTCTtZPV4c3BweRUSgb3-_WkUfN4qD_jwX4B70asJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724274574</pqid></control><display><type>article</type><title>Response Surface Methodology Based Optimization of Test Parameter in Glass Fiber Reinforced Polyamide 66 for Dry Sliding, Tribological Performance</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jagadeesan, Narendran ; Selvaraj, Anthoniraj ; Nagaraja, Santhosh ; Abbas, Mohamed ; Saleel, C. Ahamed ; Aabid, Abdul ; Baig, Muneer</creator><creatorcontrib>Jagadeesan, Narendran ; Selvaraj, Anthoniraj ; Nagaraja, Santhosh ; Abbas, Mohamed ; Saleel, C. Ahamed ; Aabid, Abdul ; Baig, Muneer</creatorcontrib><description>The tribological performance of a glass fiber reinforced polyamide66 (GFRPA66) composite with varying fiber weight percentage (wt.%) [30 wt.% and 35 wt.%] is investigated in this study using a pin-on-disc tribometer. GFRPA66 composite specimens in the form of pins with varying percentages of fiber viz., 30 wt.% and 35 wt.% are fabricated by an injection molding process. Tribological performances, such as coefficient of friction (COF) and the specific wear rate (SWR), are investigated. The factors affecting the wear of GFRPA66 composites [with 30 wt.% and 35 wt.% reinforcements] are identified based on the process parameters such as load, sliding velocity, and sliding distance. Design Expert 13.0 software is used for the experimental data analysis, based on the design of experiments planned in accordance with the central composite design (CCD) of the response surface methodology (RSM) technique. The significance of the obtained results are analyzed using analysis of variance (ANOVA) techniques. To attain minimum SWR and COF, the wear performance is optimized in dry sliding conditions. The analysis of experimental data revealed that SWR and COF increased with increasing load, sliding velocity, and sliding distance for GFRPA66 [30 wt.%], but decreased with increasing polyamide weight percentage. The SWR for a maximum load of 80 N, and for a sliding velocity of 0.22 m/s, and a sliding distance of 3500 m for GFRPA66 composite specimens with 30 wt.% reinforcements are found to be 0.0121 m3/Nm, while the SWR for the same set of parameters for GFRPA66 composite specimens with 35 wt.% reinforcements are found to be 0.0102 m3/Nm. The COF for the GFRPA66 composite specimens with 30 wt.% reinforcements for the above set of parameters is found to be 0.37, while the GFRPA66 composite specimens with 35 wt.% reinforcements showed significant improvement in wear performance with a reduction in COF to 0.25. Finally, using a scanning electron microscope (SEM), the worn surfaces of the GFRPA66 are examined and interpreted.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15196520</identifier><identifier>PMID: 36233862</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Coefficient of friction ; Data analysis ; Deformation ; Design of experiments ; Fiber composites ; Fiber reinforced polymers ; Filler materials ; Friction ; Glass fiber reinforced plastics ; Hydrogen bonds ; Injection molding ; Load ; Lubricants & lubrication ; Mechanical properties ; Methods ; Optimization ; Parameter identification ; Polyamide resins ; Polyamides ; Polymers ; Process parameters ; Response surface methodology ; Sliding ; Statistical analysis ; Tribology ; Variance analysis ; Wear rate</subject><ispartof>Materials, 2022-09, Vol.15 (19), p.6520</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-24101b8a8df1f16f8b9975421ff6d27d1a49451bf730bdd1a44f58852b25e7793</citedby><cites>FETCH-LOGICAL-c422t-24101b8a8df1f16f8b9975421ff6d27d1a49451bf730bdd1a44f58852b25e7793</cites><orcidid>0000-0002-8240-3027 ; 0000-0002-4355-9803 ; 0000-0002-3141-2900 ; 0000-0003-0636-4449 ; 0000-0002-3683-9356 ; 0000-0003-3705-4371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573062/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573062/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Jagadeesan, Narendran</creatorcontrib><creatorcontrib>Selvaraj, Anthoniraj</creatorcontrib><creatorcontrib>Nagaraja, Santhosh</creatorcontrib><creatorcontrib>Abbas, Mohamed</creatorcontrib><creatorcontrib>Saleel, C. Ahamed</creatorcontrib><creatorcontrib>Aabid, Abdul</creatorcontrib><creatorcontrib>Baig, Muneer</creatorcontrib><title>Response Surface Methodology Based Optimization of Test Parameter in Glass Fiber Reinforced Polyamide 66 for Dry Sliding, Tribological Performance</title><title>Materials</title><description>The tribological performance of a glass fiber reinforced polyamide66 (GFRPA66) composite with varying fiber weight percentage (wt.%) [30 wt.% and 35 wt.%] is investigated in this study using a pin-on-disc tribometer. GFRPA66 composite specimens in the form of pins with varying percentages of fiber viz., 30 wt.% and 35 wt.% are fabricated by an injection molding process. Tribological performances, such as coefficient of friction (COF) and the specific wear rate (SWR), are investigated. The factors affecting the wear of GFRPA66 composites [with 30 wt.% and 35 wt.% reinforcements] are identified based on the process parameters such as load, sliding velocity, and sliding distance. Design Expert 13.0 software is used for the experimental data analysis, based on the design of experiments planned in accordance with the central composite design (CCD) of the response surface methodology (RSM) technique. The significance of the obtained results are analyzed using analysis of variance (ANOVA) techniques. To attain minimum SWR and COF, the wear performance is optimized in dry sliding conditions. The analysis of experimental data revealed that SWR and COF increased with increasing load, sliding velocity, and sliding distance for GFRPA66 [30 wt.%], but decreased with increasing polyamide weight percentage. The SWR for a maximum load of 80 N, and for a sliding velocity of 0.22 m/s, and a sliding distance of 3500 m for GFRPA66 composite specimens with 30 wt.% reinforcements are found to be 0.0121 m3/Nm, while the SWR for the same set of parameters for GFRPA66 composite specimens with 35 wt.% reinforcements are found to be 0.0102 m3/Nm. The COF for the GFRPA66 composite specimens with 30 wt.% reinforcements for the above set of parameters is found to be 0.37, while the GFRPA66 composite specimens with 35 wt.% reinforcements showed significant improvement in wear performance with a reduction in COF to 0.25. Finally, using a scanning electron microscope (SEM), the worn surfaces of the GFRPA66 are examined and interpreted.</description><subject>Coefficient of friction</subject><subject>Data analysis</subject><subject>Deformation</subject><subject>Design of experiments</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Filler materials</subject><subject>Friction</subject><subject>Glass fiber reinforced plastics</subject><subject>Hydrogen bonds</subject><subject>Injection molding</subject><subject>Load</subject><subject>Lubricants & lubrication</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Polymers</subject><subject>Process parameters</subject><subject>Response surface methodology</subject><subject>Sliding</subject><subject>Statistical analysis</subject><subject>Tribology</subject><subject>Variance analysis</subject><subject>Wear rate</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkl9vFCEQwInR2Obsi5-AxBdjvLr8211eTGq11aSml_Z8JiwMVxoWrrBncn4MP7FsrvEfPDAz_GYGZgahl6Q5ZUw270ZNBJGtoM0TdEykbJdEcv70L_kInZRy39TFGOmpfI6OWEsZ61t6jH7eQNmmWADf7rLTBvBXmO6STSFt9viDLmDx9Xbyo_-hJ58iTg6voUx4pbMeYYKMfcSXQZeCL_xQ1Rvw0aVsquMqhb0evQXctrja8Me8x7fBWx83b_E6-2FO440OeAW5AqOOBl6gZ06HAieP5wJ9u_i0Pv-8vLq-_HJ-drU0nNJpSTlpyNDr3jriSOv6QcpOcEqcay3tLNFcckEG17FmsLPKneh7QQcqoOskW6D3h7jb3TCCNRCnrIPaZj_qvFdJe_XvTfR3apO-KylqyFrBBXr9GCCnh10tihp9MRCCjpB2RdGO1tYITnhFX_2H3qddjvV7M8Vpx0U3U6cHaqMDqLmMNa-p28LoTYrgfLWfzTCTtZPV4c3BweRUSgb3-_WkUfN4qD_jwX4B70asJg</recordid><startdate>20220920</startdate><enddate>20220920</enddate><creator>Jagadeesan, Narendran</creator><creator>Selvaraj, Anthoniraj</creator><creator>Nagaraja, Santhosh</creator><creator>Abbas, Mohamed</creator><creator>Saleel, C. Ahamed</creator><creator>Aabid, Abdul</creator><creator>Baig, Muneer</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8240-3027</orcidid><orcidid>https://orcid.org/0000-0002-4355-9803</orcidid><orcidid>https://orcid.org/0000-0002-3141-2900</orcidid><orcidid>https://orcid.org/0000-0003-0636-4449</orcidid><orcidid>https://orcid.org/0000-0002-3683-9356</orcidid><orcidid>https://orcid.org/0000-0003-3705-4371</orcidid></search><sort><creationdate>20220920</creationdate><title>Response Surface Methodology Based Optimization of Test Parameter in Glass Fiber Reinforced Polyamide 66 for Dry Sliding, Tribological Performance</title><author>Jagadeesan, Narendran ; Selvaraj, Anthoniraj ; Nagaraja, Santhosh ; Abbas, Mohamed ; Saleel, C. Ahamed ; Aabid, Abdul ; Baig, Muneer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-24101b8a8df1f16f8b9975421ff6d27d1a49451bf730bdd1a44f58852b25e7793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coefficient of friction</topic><topic>Data analysis</topic><topic>Deformation</topic><topic>Design of experiments</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Filler materials</topic><topic>Friction</topic><topic>Glass fiber reinforced plastics</topic><topic>Hydrogen bonds</topic><topic>Injection molding</topic><topic>Load</topic><topic>Lubricants & lubrication</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Polymers</topic><topic>Process parameters</topic><topic>Response surface methodology</topic><topic>Sliding</topic><topic>Statistical analysis</topic><topic>Tribology</topic><topic>Variance analysis</topic><topic>Wear rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jagadeesan, Narendran</creatorcontrib><creatorcontrib>Selvaraj, Anthoniraj</creatorcontrib><creatorcontrib>Nagaraja, Santhosh</creatorcontrib><creatorcontrib>Abbas, Mohamed</creatorcontrib><creatorcontrib>Saleel, C. Ahamed</creatorcontrib><creatorcontrib>Aabid, Abdul</creatorcontrib><creatorcontrib>Baig, Muneer</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jagadeesan, Narendran</au><au>Selvaraj, Anthoniraj</au><au>Nagaraja, Santhosh</au><au>Abbas, Mohamed</au><au>Saleel, C. Ahamed</au><au>Aabid, Abdul</au><au>Baig, Muneer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response Surface Methodology Based Optimization of Test Parameter in Glass Fiber Reinforced Polyamide 66 for Dry Sliding, Tribological Performance</atitle><jtitle>Materials</jtitle><date>2022-09-20</date><risdate>2022</risdate><volume>15</volume><issue>19</issue><spage>6520</spage><pages>6520-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The tribological performance of a glass fiber reinforced polyamide66 (GFRPA66) composite with varying fiber weight percentage (wt.%) [30 wt.% and 35 wt.%] is investigated in this study using a pin-on-disc tribometer. GFRPA66 composite specimens in the form of pins with varying percentages of fiber viz., 30 wt.% and 35 wt.% are fabricated by an injection molding process. Tribological performances, such as coefficient of friction (COF) and the specific wear rate (SWR), are investigated. The factors affecting the wear of GFRPA66 composites [with 30 wt.% and 35 wt.% reinforcements] are identified based on the process parameters such as load, sliding velocity, and sliding distance. Design Expert 13.0 software is used for the experimental data analysis, based on the design of experiments planned in accordance with the central composite design (CCD) of the response surface methodology (RSM) technique. The significance of the obtained results are analyzed using analysis of variance (ANOVA) techniques. To attain minimum SWR and COF, the wear performance is optimized in dry sliding conditions. The analysis of experimental data revealed that SWR and COF increased with increasing load, sliding velocity, and sliding distance for GFRPA66 [30 wt.%], but decreased with increasing polyamide weight percentage. The SWR for a maximum load of 80 N, and for a sliding velocity of 0.22 m/s, and a sliding distance of 3500 m for GFRPA66 composite specimens with 30 wt.% reinforcements are found to be 0.0121 m3/Nm, while the SWR for the same set of parameters for GFRPA66 composite specimens with 35 wt.% reinforcements are found to be 0.0102 m3/Nm. The COF for the GFRPA66 composite specimens with 30 wt.% reinforcements for the above set of parameters is found to be 0.37, while the GFRPA66 composite specimens with 35 wt.% reinforcements showed significant improvement in wear performance with a reduction in COF to 0.25. Finally, using a scanning electron microscope (SEM), the worn surfaces of the GFRPA66 are examined and interpreted.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36233862</pmid><doi>10.3390/ma15196520</doi><orcidid>https://orcid.org/0000-0002-8240-3027</orcidid><orcidid>https://orcid.org/0000-0002-4355-9803</orcidid><orcidid>https://orcid.org/0000-0002-3141-2900</orcidid><orcidid>https://orcid.org/0000-0003-0636-4449</orcidid><orcidid>https://orcid.org/0000-0002-3683-9356</orcidid><orcidid>https://orcid.org/0000-0003-3705-4371</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-09, Vol.15 (19), p.6520 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9573062 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Coefficient of friction Data analysis Deformation Design of experiments Fiber composites Fiber reinforced polymers Filler materials Friction Glass fiber reinforced plastics Hydrogen bonds Injection molding Load Lubricants & lubrication Mechanical properties Methods Optimization Parameter identification Polyamide resins Polyamides Polymers Process parameters Response surface methodology Sliding Statistical analysis Tribology Variance analysis Wear rate |
title | Response Surface Methodology Based Optimization of Test Parameter in Glass Fiber Reinforced Polyamide 66 for Dry Sliding, Tribological Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20Surface%20Methodology%20Based%20Optimization%20of%20Test%20Parameter%20in%20Glass%20Fiber%20Reinforced%20Polyamide%2066%20for%20Dry%20Sliding,%20Tribological%20Performance&rft.jtitle=Materials&rft.au=Jagadeesan,%20Narendran&rft.date=2022-09-20&rft.volume=15&rft.issue=19&rft.spage=6520&rft.pages=6520-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15196520&rft_dat=%3Cgale_pubme%3EA745739829%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724274574&rft_id=info:pmid/36233862&rft_galeid=A745739829&rfr_iscdi=true |