Biocompatibility of 3D-Printed PLA, PEEK and PETG: Adhesion of Bone Marrow and Peritoneal Lavage Cells

Samples in the form of cylindrical plates, additively manufactured using the fused deposition modelling (or filament freeform fabrication, FDM/FFF) technology from polylactide (PLA), polyethylene terephthalate glycol (PETG) and polyetheretherketone (PEEK), were studied in series of in-vitro experime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-09, Vol.14 (19), p.3958
Hauptverfasser: Shilov, Stanislav Y., Rozhkova, Yulia A., Markova, Lubov N., Tashkinov, Mikhail A., Vindokurov, Ilya V., Silberschmidt, Vadim V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 3958
container_title Polymers
container_volume 14
creator Shilov, Stanislav Y.
Rozhkova, Yulia A.
Markova, Lubov N.
Tashkinov, Mikhail A.
Vindokurov, Ilya V.
Silberschmidt, Vadim V.
description Samples in the form of cylindrical plates, additively manufactured using the fused deposition modelling (or filament freeform fabrication, FDM/FFF) technology from polylactide (PLA), polyethylene terephthalate glycol (PETG) and polyetheretherketone (PEEK), were studied in series of in-vitro experiments on the adhesion of rat bone-marrow cells and rat peritoneal cells. Methods of estimation of the absolute number of cells and polymer samples’ mass change were used for the evaluation of cells adhesion, followed by the evaluation of cell-culture supernatants. The results of experiments for both types of cells demonstrated a statistically significant change in the absolute number of cells (variation from 44 to 119%) and the weight of the polymer samples (variation from 0.61 to 2.18%), depending on roughness of sample surface, controlled by a nozzle diameter of a 3D printer as well as printing layer height. It was found that more cells adhere to PLA samples with a larger nozzle diameter and layer height. For PETG samples, the results did not show a clear relationship between cell adhesion and printing parameters. For PEEK samples, on the contrary, adhesion to samples printed with a lower nozzle diameter (higher resolution) is better than to samples printed with a larger nozzle diameter (lower resolution). The difference in results for various polymers can be explained by their chemical structure.
doi_str_mv 10.3390/polym14193958
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9571806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746438895</galeid><sourcerecordid>A746438895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-27edda9978369585aeb7877ef37ce1af93234f0e925026bdd0d1b53ee0fca6263</originalsourceid><addsrcrecordid>eNpdkc9vFCEUxyeNxja1R-8kvXhwKr8ZPJhs17Ua13QP7ZkwzGNLMzOsMFuz_71MtjFWOPB4fN4XvryqekfwFWMaf9zF_jAQTjTTojmpzihWrOZM4lf_xKfVRc6PuAwupCTqTXXKJGVCY3ZW-esQXRx2dgpt6MN0QNEj9qXepDBO0KHNevEBbVarH8iOZbe6u_mEFt0D5BDHGb2OI6CfNqX4-0hAClPJ2R6t7ZPdAlpC3-e31Wtv-wwXz-t5df91dbf8Vq9vb74vF-vacUammiroOqu1apgsjoSFVjVKgWfKAbFeM8q4x6CpwFS2XYc70goGgL2zkkp2Xn0-6u727QCdg3FKtje7FAabDibaYF6ejOHBbOOT0UKRBs8C758FUvy1hzyZIWRXLNgR4j4bqqggmnA-o5f_oY9xn8Zib6Y41ZhIVairI7W1PZgw-ljudWV2MARXfsqHkl8oLjlrGi1KQX0scCnmnMD_fT3BZu66edF19gdtbJ0T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724290167</pqid></control><display><type>article</type><title>Biocompatibility of 3D-Printed PLA, PEEK and PETG: Adhesion of Bone Marrow and Peritoneal Lavage Cells</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Shilov, Stanislav Y. ; Rozhkova, Yulia A. ; Markova, Lubov N. ; Tashkinov, Mikhail A. ; Vindokurov, Ilya V. ; Silberschmidt, Vadim V.</creator><creatorcontrib>Shilov, Stanislav Y. ; Rozhkova, Yulia A. ; Markova, Lubov N. ; Tashkinov, Mikhail A. ; Vindokurov, Ilya V. ; Silberschmidt, Vadim V.</creatorcontrib><description>Samples in the form of cylindrical plates, additively manufactured using the fused deposition modelling (or filament freeform fabrication, FDM/FFF) technology from polylactide (PLA), polyethylene terephthalate glycol (PETG) and polyetheretherketone (PEEK), were studied in series of in-vitro experiments on the adhesion of rat bone-marrow cells and rat peritoneal cells. Methods of estimation of the absolute number of cells and polymer samples’ mass change were used for the evaluation of cells adhesion, followed by the evaluation of cell-culture supernatants. The results of experiments for both types of cells demonstrated a statistically significant change in the absolute number of cells (variation from 44 to 119%) and the weight of the polymer samples (variation from 0.61 to 2.18%), depending on roughness of sample surface, controlled by a nozzle diameter of a 3D printer as well as printing layer height. It was found that more cells adhere to PLA samples with a larger nozzle diameter and layer height. For PETG samples, the results did not show a clear relationship between cell adhesion and printing parameters. For PEEK samples, on the contrary, adhesion to samples printed with a lower nozzle diameter (higher resolution) is better than to samples printed with a larger nozzle diameter (lower resolution). The difference in results for various polymers can be explained by their chemical structure.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14193958</identifier><identifier>PMID: 36235903</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3-D printers ; Additive manufacturing ; Advanced manufacturing technologies ; Analysis ; Animal experimentation ; Biocompatibility ; Bone marrow ; Cell adhesion ; Cell adhesion &amp; migration ; Enzymes ; Fibroblasts ; Freeform fabrication ; Fused deposition modeling ; Hydrocarbons ; Infections ; Neutrophils ; Nozzles ; Polyether ether ketones ; Polyethylene terephthalate ; Polylactic acid ; Polymer industry ; Polymers ; Prostheses ; Rapid prototyping ; Three dimensional printing ; Transplants &amp; implants</subject><ispartof>Polymers, 2022-09, Vol.14 (19), p.3958</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-27edda9978369585aeb7877ef37ce1af93234f0e925026bdd0d1b53ee0fca6263</citedby><cites>FETCH-LOGICAL-c431t-27edda9978369585aeb7877ef37ce1af93234f0e925026bdd0d1b53ee0fca6263</cites><orcidid>0000-0002-3199-455X ; 0000-0003-3338-3311 ; 0000-0002-1885-0404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571806/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571806/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Shilov, Stanislav Y.</creatorcontrib><creatorcontrib>Rozhkova, Yulia A.</creatorcontrib><creatorcontrib>Markova, Lubov N.</creatorcontrib><creatorcontrib>Tashkinov, Mikhail A.</creatorcontrib><creatorcontrib>Vindokurov, Ilya V.</creatorcontrib><creatorcontrib>Silberschmidt, Vadim V.</creatorcontrib><title>Biocompatibility of 3D-Printed PLA, PEEK and PETG: Adhesion of Bone Marrow and Peritoneal Lavage Cells</title><title>Polymers</title><description>Samples in the form of cylindrical plates, additively manufactured using the fused deposition modelling (or filament freeform fabrication, FDM/FFF) technology from polylactide (PLA), polyethylene terephthalate glycol (PETG) and polyetheretherketone (PEEK), were studied in series of in-vitro experiments on the adhesion of rat bone-marrow cells and rat peritoneal cells. Methods of estimation of the absolute number of cells and polymer samples’ mass change were used for the evaluation of cells adhesion, followed by the evaluation of cell-culture supernatants. The results of experiments for both types of cells demonstrated a statistically significant change in the absolute number of cells (variation from 44 to 119%) and the weight of the polymer samples (variation from 0.61 to 2.18%), depending on roughness of sample surface, controlled by a nozzle diameter of a 3D printer as well as printing layer height. It was found that more cells adhere to PLA samples with a larger nozzle diameter and layer height. For PETG samples, the results did not show a clear relationship between cell adhesion and printing parameters. For PEEK samples, on the contrary, adhesion to samples printed with a lower nozzle diameter (higher resolution) is better than to samples printed with a larger nozzle diameter (lower resolution). The difference in results for various polymers can be explained by their chemical structure.</description><subject>3-D printers</subject><subject>Additive manufacturing</subject><subject>Advanced manufacturing technologies</subject><subject>Analysis</subject><subject>Animal experimentation</subject><subject>Biocompatibility</subject><subject>Bone marrow</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Enzymes</subject><subject>Fibroblasts</subject><subject>Freeform fabrication</subject><subject>Fused deposition modeling</subject><subject>Hydrocarbons</subject><subject>Infections</subject><subject>Neutrophils</subject><subject>Nozzles</subject><subject>Polyether ether ketones</subject><subject>Polyethylene terephthalate</subject><subject>Polylactic acid</subject><subject>Polymer industry</subject><subject>Polymers</subject><subject>Prostheses</subject><subject>Rapid prototyping</subject><subject>Three dimensional printing</subject><subject>Transplants &amp; implants</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkc9vFCEUxyeNxja1R-8kvXhwKr8ZPJhs17Ua13QP7ZkwzGNLMzOsMFuz_71MtjFWOPB4fN4XvryqekfwFWMaf9zF_jAQTjTTojmpzihWrOZM4lf_xKfVRc6PuAwupCTqTXXKJGVCY3ZW-esQXRx2dgpt6MN0QNEj9qXepDBO0KHNevEBbVarH8iOZbe6u_mEFt0D5BDHGb2OI6CfNqX4-0hAClPJ2R6t7ZPdAlpC3-e31Wtv-wwXz-t5df91dbf8Vq9vb74vF-vacUammiroOqu1apgsjoSFVjVKgWfKAbFeM8q4x6CpwFS2XYc70goGgL2zkkp2Xn0-6u727QCdg3FKtje7FAabDibaYF6ejOHBbOOT0UKRBs8C758FUvy1hzyZIWRXLNgR4j4bqqggmnA-o5f_oY9xn8Zib6Y41ZhIVairI7W1PZgw-ljudWV2MARXfsqHkl8oLjlrGi1KQX0scCnmnMD_fT3BZu66edF19gdtbJ0T</recordid><startdate>20220922</startdate><enddate>20220922</enddate><creator>Shilov, Stanislav Y.</creator><creator>Rozhkova, Yulia A.</creator><creator>Markova, Lubov N.</creator><creator>Tashkinov, Mikhail A.</creator><creator>Vindokurov, Ilya V.</creator><creator>Silberschmidt, Vadim V.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3199-455X</orcidid><orcidid>https://orcid.org/0000-0003-3338-3311</orcidid><orcidid>https://orcid.org/0000-0002-1885-0404</orcidid></search><sort><creationdate>20220922</creationdate><title>Biocompatibility of 3D-Printed PLA, PEEK and PETG: Adhesion of Bone Marrow and Peritoneal Lavage Cells</title><author>Shilov, Stanislav Y. ; Rozhkova, Yulia A. ; Markova, Lubov N. ; Tashkinov, Mikhail A. ; Vindokurov, Ilya V. ; Silberschmidt, Vadim V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-27edda9978369585aeb7877ef37ce1af93234f0e925026bdd0d1b53ee0fca6263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D printers</topic><topic>Additive manufacturing</topic><topic>Advanced manufacturing technologies</topic><topic>Analysis</topic><topic>Animal experimentation</topic><topic>Biocompatibility</topic><topic>Bone marrow</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Enzymes</topic><topic>Fibroblasts</topic><topic>Freeform fabrication</topic><topic>Fused deposition modeling</topic><topic>Hydrocarbons</topic><topic>Infections</topic><topic>Neutrophils</topic><topic>Nozzles</topic><topic>Polyether ether ketones</topic><topic>Polyethylene terephthalate</topic><topic>Polylactic acid</topic><topic>Polymer industry</topic><topic>Polymers</topic><topic>Prostheses</topic><topic>Rapid prototyping</topic><topic>Three dimensional printing</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shilov, Stanislav Y.</creatorcontrib><creatorcontrib>Rozhkova, Yulia A.</creatorcontrib><creatorcontrib>Markova, Lubov N.</creatorcontrib><creatorcontrib>Tashkinov, Mikhail A.</creatorcontrib><creatorcontrib>Vindokurov, Ilya V.</creatorcontrib><creatorcontrib>Silberschmidt, Vadim V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shilov, Stanislav Y.</au><au>Rozhkova, Yulia A.</au><au>Markova, Lubov N.</au><au>Tashkinov, Mikhail A.</au><au>Vindokurov, Ilya V.</au><au>Silberschmidt, Vadim V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocompatibility of 3D-Printed PLA, PEEK and PETG: Adhesion of Bone Marrow and Peritoneal Lavage Cells</atitle><jtitle>Polymers</jtitle><date>2022-09-22</date><risdate>2022</risdate><volume>14</volume><issue>19</issue><spage>3958</spage><pages>3958-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Samples in the form of cylindrical plates, additively manufactured using the fused deposition modelling (or filament freeform fabrication, FDM/FFF) technology from polylactide (PLA), polyethylene terephthalate glycol (PETG) and polyetheretherketone (PEEK), were studied in series of in-vitro experiments on the adhesion of rat bone-marrow cells and rat peritoneal cells. Methods of estimation of the absolute number of cells and polymer samples’ mass change were used for the evaluation of cells adhesion, followed by the evaluation of cell-culture supernatants. The results of experiments for both types of cells demonstrated a statistically significant change in the absolute number of cells (variation from 44 to 119%) and the weight of the polymer samples (variation from 0.61 to 2.18%), depending on roughness of sample surface, controlled by a nozzle diameter of a 3D printer as well as printing layer height. It was found that more cells adhere to PLA samples with a larger nozzle diameter and layer height. For PETG samples, the results did not show a clear relationship between cell adhesion and printing parameters. For PEEK samples, on the contrary, adhesion to samples printed with a lower nozzle diameter (higher resolution) is better than to samples printed with a larger nozzle diameter (lower resolution). The difference in results for various polymers can be explained by their chemical structure.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36235903</pmid><doi>10.3390/polym14193958</doi><orcidid>https://orcid.org/0000-0002-3199-455X</orcidid><orcidid>https://orcid.org/0000-0003-3338-3311</orcidid><orcidid>https://orcid.org/0000-0002-1885-0404</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2022-09, Vol.14 (19), p.3958
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9571806
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects 3-D printers
Additive manufacturing
Advanced manufacturing technologies
Analysis
Animal experimentation
Biocompatibility
Bone marrow
Cell adhesion
Cell adhesion & migration
Enzymes
Fibroblasts
Freeform fabrication
Fused deposition modeling
Hydrocarbons
Infections
Neutrophils
Nozzles
Polyether ether ketones
Polyethylene terephthalate
Polylactic acid
Polymer industry
Polymers
Prostheses
Rapid prototyping
Three dimensional printing
Transplants & implants
title Biocompatibility of 3D-Printed PLA, PEEK and PETG: Adhesion of Bone Marrow and Peritoneal Lavage Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A59%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocompatibility%20of%203D-Printed%20PLA,%20PEEK%20and%20PETG:%20Adhesion%20of%20Bone%20Marrow%20and%20Peritoneal%20Lavage%20Cells&rft.jtitle=Polymers&rft.au=Shilov,%20Stanislav%20Y.&rft.date=2022-09-22&rft.volume=14&rft.issue=19&rft.spage=3958&rft.pages=3958-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14193958&rft_dat=%3Cgale_pubme%3EA746438895%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724290167&rft_id=info:pmid/36235903&rft_galeid=A746438895&rfr_iscdi=true