Numerical Simulation of Failure Behavior of Brittle Heterogeneous Rock under Uniaxial Compression Test
Rocks have formed heterogeneous characteristics after experiencing complex natural geological processes. Studying the heterogeneity of rocks is significant for rock mechanics. In this study, a linear parallel bond model with Weibull distribution in two-dimensional particle flow code (PFC2D) is adopt...
Gespeichert in:
Veröffentlicht in: | Materials 2022-10, Vol.15 (19), p.7035 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 7035 |
container_title | Materials |
container_volume | 15 |
creator | Liu, Jia Ma, Fengshan Guo, Jie Zhou, Tongtong Song, Yewei Li, Fangrui |
description | Rocks have formed heterogeneous characteristics after experiencing complex natural geological processes. Studying the heterogeneity of rocks is significant for rock mechanics. In this study, a linear parallel bond model with Weibull distribution in two-dimensional particle flow code (PFC2D) is adopted to study the mechanical characteristics and brittle failure mode of granite rock specimens with different heterogeneity. Firstly, we selected several combinations of key micro-parameters of the parallel bond model. Then, we subjected them to a Weibull distribution to satisfy heterogeneity, respectively. Finally, we chose one optimal combination plan after comparing the stress–strain curves of heterogeneous rock specimens. We analyzed the simulated results of heterogeneous rock specimens. The crack distribution of rock specimens under peak stress shows different characteristics: a diagonal shape in rock specimens with low heterogeneity indexes, or a rotated “y” shape in rock specimens with high heterogeneity indexes. As for failure mode, the numerical simulation results show high consistency with the laboratory experiment results. The rock specimen breaks down almost diagonally, and the whole specimen tends to form an x-shaped conjugate shear failure or the well-known “hour-glass” failure mode. With the increase of the homogeneity index of the rock specimen, the shear rupture angle becomes larger and larger. Generally, the crack number increases with time, and when the rock specimen reaches the peak failure point, the number of cracks increases sharply. The development of cracks in numerical rock specimens under compression test is a result of the coalescence of many microscopic cracks. Furthermore, tensile cracks formed initially, followed by shear behavior along the macroscopic crack plane. We also preliminarily study the mechanical characteristics of heterogeneous rock specimens with discontinuous structural planes. The discontinuous structural planes are simulated by the smooth-joint model. We can conclude that the discontinuous structural planes and the microscopic structural planes which contribute to the heterogeneity have a mutual influence on each other. |
doi_str_mv | 10.3390/ma15197035 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9570763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745740502</galeid><sourcerecordid>A745740502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-583566194fbad5c35743dbde9aeb8d831b97c651f9c99d2858788cedd5ab199b3</originalsourceid><addsrcrecordid>eNpdUV1PFTEQbYxECPDiL9jEF2NyoZ_b7YsJ3ICYEEwUnptuO3spdttru0v039v1EhE7D51Mz5w5p4PQW4JPGFP4dDREECUxE6_QAVGqXRHF-et_8n10XMoDrocx0lH1Bu2zljLOJD9Aw808QvbWhOabH-dgJp9ik4bm0vgwZ2jO4d48-pSX2nn20xSguYIJctpAhDSX5muy35s5OsjNXfTmp69c6zRuM5SykN1CmY7Q3mBCgeOn-xDdXV7crq9W118-fV6fXa8sp3RaiY6Jtq2ih944YZmQnLnegTLQd65jpFfStoIMyirlaCc62XUWnBOmr357dog-7ni3cz-CsxCnbILeZj-a_Esn4_XLl-jv9SY9aiUkli2rBO-fCHL6MVflevTFQgjmj1lNJa3fLQiTFfruP-hDmnOs9hYUp1JgvqBOdqiNCaB9HFKda2s4GL1NEQZf62eSV69YYFobPuwabE6lZBj-qidYLyvXzytnvwENyJ2j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724275047</pqid></control><display><type>article</type><title>Numerical Simulation of Failure Behavior of Brittle Heterogeneous Rock under Uniaxial Compression Test</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Jia ; Ma, Fengshan ; Guo, Jie ; Zhou, Tongtong ; Song, Yewei ; Li, Fangrui</creator><creatorcontrib>Liu, Jia ; Ma, Fengshan ; Guo, Jie ; Zhou, Tongtong ; Song, Yewei ; Li, Fangrui</creatorcontrib><description>Rocks have formed heterogeneous characteristics after experiencing complex natural geological processes. Studying the heterogeneity of rocks is significant for rock mechanics. In this study, a linear parallel bond model with Weibull distribution in two-dimensional particle flow code (PFC2D) is adopted to study the mechanical characteristics and brittle failure mode of granite rock specimens with different heterogeneity. Firstly, we selected several combinations of key micro-parameters of the parallel bond model. Then, we subjected them to a Weibull distribution to satisfy heterogeneity, respectively. Finally, we chose one optimal combination plan after comparing the stress–strain curves of heterogeneous rock specimens. We analyzed the simulated results of heterogeneous rock specimens. The crack distribution of rock specimens under peak stress shows different characteristics: a diagonal shape in rock specimens with low heterogeneity indexes, or a rotated “y” shape in rock specimens with high heterogeneity indexes. As for failure mode, the numerical simulation results show high consistency with the laboratory experiment results. The rock specimen breaks down almost diagonally, and the whole specimen tends to form an x-shaped conjugate shear failure or the well-known “hour-glass” failure mode. With the increase of the homogeneity index of the rock specimen, the shear rupture angle becomes larger and larger. Generally, the crack number increases with time, and when the rock specimen reaches the peak failure point, the number of cracks increases sharply. The development of cracks in numerical rock specimens under compression test is a result of the coalescence of many microscopic cracks. Furthermore, tensile cracks formed initially, followed by shear behavior along the macroscopic crack plane. We also preliminarily study the mechanical characteristics of heterogeneous rock specimens with discontinuous structural planes. The discontinuous structural planes are simulated by the smooth-joint model. We can conclude that the discontinuous structural planes and the microscopic structural planes which contribute to the heterogeneity have a mutual influence on each other.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15197035</identifier><identifier>PMID: 36234374</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Brittleness ; Calibration ; Compression tests ; Computer simulation ; Computer-generated environments ; Crack propagation ; Cracks ; Deformation ; Discrete element method ; Experiments ; Failure modes ; Geological processes ; Geological research ; Heterogeneity ; Homogeneity ; Laboratories ; Mathematical models ; Mechanical properties ; Methods ; Numerical analysis ; Physical properties ; Planes ; Rock mechanics ; Rocks ; Shear ; Simulation ; Stress-strain curves ; Two dimensional flow ; Weibull distribution</subject><ispartof>Materials, 2022-10, Vol.15 (19), p.7035</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-583566194fbad5c35743dbde9aeb8d831b97c651f9c99d2858788cedd5ab199b3</citedby><cites>FETCH-LOGICAL-c422t-583566194fbad5c35743dbde9aeb8d831b97c651f9c99d2858788cedd5ab199b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570763/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570763/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Ma, Fengshan</creatorcontrib><creatorcontrib>Guo, Jie</creatorcontrib><creatorcontrib>Zhou, Tongtong</creatorcontrib><creatorcontrib>Song, Yewei</creatorcontrib><creatorcontrib>Li, Fangrui</creatorcontrib><title>Numerical Simulation of Failure Behavior of Brittle Heterogeneous Rock under Uniaxial Compression Test</title><title>Materials</title><description>Rocks have formed heterogeneous characteristics after experiencing complex natural geological processes. Studying the heterogeneity of rocks is significant for rock mechanics. In this study, a linear parallel bond model with Weibull distribution in two-dimensional particle flow code (PFC2D) is adopted to study the mechanical characteristics and brittle failure mode of granite rock specimens with different heterogeneity. Firstly, we selected several combinations of key micro-parameters of the parallel bond model. Then, we subjected them to a Weibull distribution to satisfy heterogeneity, respectively. Finally, we chose one optimal combination plan after comparing the stress–strain curves of heterogeneous rock specimens. We analyzed the simulated results of heterogeneous rock specimens. The crack distribution of rock specimens under peak stress shows different characteristics: a diagonal shape in rock specimens with low heterogeneity indexes, or a rotated “y” shape in rock specimens with high heterogeneity indexes. As for failure mode, the numerical simulation results show high consistency with the laboratory experiment results. The rock specimen breaks down almost diagonally, and the whole specimen tends to form an x-shaped conjugate shear failure or the well-known “hour-glass” failure mode. With the increase of the homogeneity index of the rock specimen, the shear rupture angle becomes larger and larger. Generally, the crack number increases with time, and when the rock specimen reaches the peak failure point, the number of cracks increases sharply. The development of cracks in numerical rock specimens under compression test is a result of the coalescence of many microscopic cracks. Furthermore, tensile cracks formed initially, followed by shear behavior along the macroscopic crack plane. We also preliminarily study the mechanical characteristics of heterogeneous rock specimens with discontinuous structural planes. The discontinuous structural planes are simulated by the smooth-joint model. We can conclude that the discontinuous structural planes and the microscopic structural planes which contribute to the heterogeneity have a mutual influence on each other.</description><subject>Brittleness</subject><subject>Calibration</subject><subject>Compression tests</subject><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Deformation</subject><subject>Discrete element method</subject><subject>Experiments</subject><subject>Failure modes</subject><subject>Geological processes</subject><subject>Geological research</subject><subject>Heterogeneity</subject><subject>Homogeneity</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Physical properties</subject><subject>Planes</subject><subject>Rock mechanics</subject><subject>Rocks</subject><subject>Shear</subject><subject>Simulation</subject><subject>Stress-strain curves</subject><subject>Two dimensional flow</subject><subject>Weibull distribution</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUV1PFTEQbYxECPDiL9jEF2NyoZ_b7YsJ3ICYEEwUnptuO3spdttru0v039v1EhE7D51Mz5w5p4PQW4JPGFP4dDREECUxE6_QAVGqXRHF-et_8n10XMoDrocx0lH1Bu2zljLOJD9Aw808QvbWhOabH-dgJp9ik4bm0vgwZ2jO4d48-pSX2nn20xSguYIJctpAhDSX5muy35s5OsjNXfTmp69c6zRuM5SykN1CmY7Q3mBCgeOn-xDdXV7crq9W118-fV6fXa8sp3RaiY6Jtq2ih944YZmQnLnegTLQd65jpFfStoIMyirlaCc62XUWnBOmr357dog-7ni3cz-CsxCnbILeZj-a_Esn4_XLl-jv9SY9aiUkli2rBO-fCHL6MVflevTFQgjmj1lNJa3fLQiTFfruP-hDmnOs9hYUp1JgvqBOdqiNCaB9HFKda2s4GL1NEQZf62eSV69YYFobPuwabE6lZBj-qidYLyvXzytnvwENyJ2j</recordid><startdate>20221010</startdate><enddate>20221010</enddate><creator>Liu, Jia</creator><creator>Ma, Fengshan</creator><creator>Guo, Jie</creator><creator>Zhou, Tongtong</creator><creator>Song, Yewei</creator><creator>Li, Fangrui</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20221010</creationdate><title>Numerical Simulation of Failure Behavior of Brittle Heterogeneous Rock under Uniaxial Compression Test</title><author>Liu, Jia ; Ma, Fengshan ; Guo, Jie ; Zhou, Tongtong ; Song, Yewei ; Li, Fangrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-583566194fbad5c35743dbde9aeb8d831b97c651f9c99d2858788cedd5ab199b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brittleness</topic><topic>Calibration</topic><topic>Compression tests</topic><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Deformation</topic><topic>Discrete element method</topic><topic>Experiments</topic><topic>Failure modes</topic><topic>Geological processes</topic><topic>Geological research</topic><topic>Heterogeneity</topic><topic>Homogeneity</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Physical properties</topic><topic>Planes</topic><topic>Rock mechanics</topic><topic>Rocks</topic><topic>Shear</topic><topic>Simulation</topic><topic>Stress-strain curves</topic><topic>Two dimensional flow</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Ma, Fengshan</creatorcontrib><creatorcontrib>Guo, Jie</creatorcontrib><creatorcontrib>Zhou, Tongtong</creatorcontrib><creatorcontrib>Song, Yewei</creatorcontrib><creatorcontrib>Li, Fangrui</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jia</au><au>Ma, Fengshan</au><au>Guo, Jie</au><au>Zhou, Tongtong</au><au>Song, Yewei</au><au>Li, Fangrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Failure Behavior of Brittle Heterogeneous Rock under Uniaxial Compression Test</atitle><jtitle>Materials</jtitle><date>2022-10-10</date><risdate>2022</risdate><volume>15</volume><issue>19</issue><spage>7035</spage><pages>7035-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Rocks have formed heterogeneous characteristics after experiencing complex natural geological processes. Studying the heterogeneity of rocks is significant for rock mechanics. In this study, a linear parallel bond model with Weibull distribution in two-dimensional particle flow code (PFC2D) is adopted to study the mechanical characteristics and brittle failure mode of granite rock specimens with different heterogeneity. Firstly, we selected several combinations of key micro-parameters of the parallel bond model. Then, we subjected them to a Weibull distribution to satisfy heterogeneity, respectively. Finally, we chose one optimal combination plan after comparing the stress–strain curves of heterogeneous rock specimens. We analyzed the simulated results of heterogeneous rock specimens. The crack distribution of rock specimens under peak stress shows different characteristics: a diagonal shape in rock specimens with low heterogeneity indexes, or a rotated “y” shape in rock specimens with high heterogeneity indexes. As for failure mode, the numerical simulation results show high consistency with the laboratory experiment results. The rock specimen breaks down almost diagonally, and the whole specimen tends to form an x-shaped conjugate shear failure or the well-known “hour-glass” failure mode. With the increase of the homogeneity index of the rock specimen, the shear rupture angle becomes larger and larger. Generally, the crack number increases with time, and when the rock specimen reaches the peak failure point, the number of cracks increases sharply. The development of cracks in numerical rock specimens under compression test is a result of the coalescence of many microscopic cracks. Furthermore, tensile cracks formed initially, followed by shear behavior along the macroscopic crack plane. We also preliminarily study the mechanical characteristics of heterogeneous rock specimens with discontinuous structural planes. The discontinuous structural planes are simulated by the smooth-joint model. We can conclude that the discontinuous structural planes and the microscopic structural planes which contribute to the heterogeneity have a mutual influence on each other.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36234374</pmid><doi>10.3390/ma15197035</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-10, Vol.15 (19), p.7035 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9570763 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Brittleness Calibration Compression tests Computer simulation Computer-generated environments Crack propagation Cracks Deformation Discrete element method Experiments Failure modes Geological processes Geological research Heterogeneity Homogeneity Laboratories Mathematical models Mechanical properties Methods Numerical analysis Physical properties Planes Rock mechanics Rocks Shear Simulation Stress-strain curves Two dimensional flow Weibull distribution |
title | Numerical Simulation of Failure Behavior of Brittle Heterogeneous Rock under Uniaxial Compression Test |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Failure%20Behavior%20of%20Brittle%20Heterogeneous%20Rock%20under%20Uniaxial%20Compression%20Test&rft.jtitle=Materials&rft.au=Liu,%20Jia&rft.date=2022-10-10&rft.volume=15&rft.issue=19&rft.spage=7035&rft.pages=7035-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15197035&rft_dat=%3Cgale_pubme%3EA745740502%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724275047&rft_id=info:pmid/36234374&rft_galeid=A745740502&rfr_iscdi=true |