Modelling and Optimization for Mortar Compressive Strength Incorporating Heat-Treated Fly Oil Shale Ash as an Effective Supplementary Cementitious Material Using Response Surface Methodology
Fly oil shale ash (FOSA) is a waste material known for its pozzolanic activity. This study intends to investigate the optimum thermal treatment conditions to use FOSA efficiently as a cement replacement material. FOSA samples were burned in an electric oven for 2, 4, and 6 h at temperatures ranging...
Gespeichert in:
Veröffentlicht in: | Materials 2022-09, Vol.15 (19), p.6538 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 6538 |
container_title | Materials |
container_volume | 15 |
creator | Al Salaheen, Marsail Alaloul, Wesam Malkawi, Ahmad de Brito, Jorge Alzubi, Khalid Al-Sabaeei, Abdulnaser Alnarabiji, Mohamad |
description | Fly oil shale ash (FOSA) is a waste material known for its pozzolanic activity. This study intends to investigate the optimum thermal treatment conditions to use FOSA efficiently as a cement replacement material. FOSA samples were burned in an electric oven for 2, 4, and 6 h at temperatures ranging from 550 °C to 1000 °C with 150 °C intervals. A total of 333 specimens out of 37 different mixes were prepared and tested with cement replacement ratios between 10% and 30%. The investigated properties included the mineralogical characteristics, chemical elemental analysis, compressive strength, and strength activity index for mortar samples. The findings show that the content of SiO2 + Al2O3 + Fe2O3 was less than 70% in all samples. The strength activity index of the raw FOSA at 56 days exceeded 75%. Among all specimens, the calcined samples for 2 h demonstrated the highest pozzolanic activity and compressive strength with a 75% strength activity index. The model developed by RSM is suitable for the interpretation of FOSA in the cementitious matrix with high degrees of correlation above 85%. The optimal compressive strength was achieved at a 30% replacement level, a temperature of 700 °C for 2 h, and after 56 days of curing. |
doi_str_mv | 10.3390/ma15196538 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9570664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745739847</galeid><sourcerecordid>A745739847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-435e1266c445ec6c45a4348010bc23fab3ac9e3324dfcb70852542ab38781e213</originalsourceid><addsrcrecordid>eNpdUttq3DAQNaWlCWle-gWCvpSCU-vmy0thWZImkGWhSZ6FVh57FWTJlezA9uP6bR1nQ28SaAbpnDMXTZa9p8UF503xedBU0qaUvH6VndKmKXPaCPH6L_8kO0_pscDFOa1Z8zY74SXjvK7q0-znJrTgnPU90b4l23Gyg_2hJxs86UIkmxAnHck6DGOElOwTkLspgu-nPbnxJsQxREQj_Rr0lN9HPKElV-5AttaRu712QFZpT3TCAOSy68BMzyrzODoYwKP8gayfPYth50Q2KBGtduQhLcLfII3Bp4USO22AbGDahza40B_eZW867RKcv9iz7OHq8n59nd9uv96sV7e5EYxNueASKCtLI4QEg0ZqwUVd0GJnGO_0jmvTAOdMtJ3ZVUUtmRQMr7FHFBjlZ9mXo-447wZoDSYbtVNjtAOmr4K26t8Xb_eqD0-qkVVRlgIFPr4IxPB9hjSpwSaDndcesGbFKobfKCXlCP3wH_QxzNFjeQtKsIpLuQheHFE9dlhZ3wWMa3C3MFgTPHQW71eVkBVvalEh4dORYGJIKUL3O3taqGWU1J9R4r8ACCW9wA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724273554</pqid></control><display><type>article</type><title>Modelling and Optimization for Mortar Compressive Strength Incorporating Heat-Treated Fly Oil Shale Ash as an Effective Supplementary Cementitious Material Using Response Surface Methodology</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Al Salaheen, Marsail ; Alaloul, Wesam ; Malkawi, Ahmad ; de Brito, Jorge ; Alzubi, Khalid ; Al-Sabaeei, Abdulnaser ; Alnarabiji, Mohamad</creator><creatorcontrib>Al Salaheen, Marsail ; Alaloul, Wesam ; Malkawi, Ahmad ; de Brito, Jorge ; Alzubi, Khalid ; Al-Sabaeei, Abdulnaser ; Alnarabiji, Mohamad</creatorcontrib><description>Fly oil shale ash (FOSA) is a waste material known for its pozzolanic activity. This study intends to investigate the optimum thermal treatment conditions to use FOSA efficiently as a cement replacement material. FOSA samples were burned in an electric oven for 2, 4, and 6 h at temperatures ranging from 550 °C to 1000 °C with 150 °C intervals. A total of 333 specimens out of 37 different mixes were prepared and tested with cement replacement ratios between 10% and 30%. The investigated properties included the mineralogical characteristics, chemical elemental analysis, compressive strength, and strength activity index for mortar samples. The findings show that the content of SiO2 + Al2O3 + Fe2O3 was less than 70% in all samples. The strength activity index of the raw FOSA at 56 days exceeded 75%. Among all specimens, the calcined samples for 2 h demonstrated the highest pozzolanic activity and compressive strength with a 75% strength activity index. The model developed by RSM is suitable for the interpretation of FOSA in the cementitious matrix with high degrees of correlation above 85%. The optimal compressive strength was achieved at a 30% replacement level, a temperature of 700 °C for 2 h, and after 56 days of curing.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15196538</identifier><identifier>PMID: 36233878</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum oxide ; Analysis ; Ashes ; Cement ; Compressive strength ; Construction industry ; Density ; Design of experiments ; Gravity ; Heat treatment ; Methods ; Mortars (material) ; Oil shale ; Oil-shales ; Optimization ; Particle size ; Response surface methodology ; Shale oils ; Silicon dioxide ; Sustainable development</subject><ispartof>Materials, 2022-09, Vol.15 (19), p.6538</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-435e1266c445ec6c45a4348010bc23fab3ac9e3324dfcb70852542ab38781e213</citedby><cites>FETCH-LOGICAL-c422t-435e1266c445ec6c45a4348010bc23fab3ac9e3324dfcb70852542ab38781e213</cites><orcidid>0000-0002-7316-6656 ; 0000-0002-1044-6474 ; 0000-0001-6766-2736 ; 0000-0001-7752-3756 ; 0000-0002-3505-6798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570664/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570664/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids></links><search><creatorcontrib>Al Salaheen, Marsail</creatorcontrib><creatorcontrib>Alaloul, Wesam</creatorcontrib><creatorcontrib>Malkawi, Ahmad</creatorcontrib><creatorcontrib>de Brito, Jorge</creatorcontrib><creatorcontrib>Alzubi, Khalid</creatorcontrib><creatorcontrib>Al-Sabaeei, Abdulnaser</creatorcontrib><creatorcontrib>Alnarabiji, Mohamad</creatorcontrib><title>Modelling and Optimization for Mortar Compressive Strength Incorporating Heat-Treated Fly Oil Shale Ash as an Effective Supplementary Cementitious Material Using Response Surface Methodology</title><title>Materials</title><description>Fly oil shale ash (FOSA) is a waste material known for its pozzolanic activity. This study intends to investigate the optimum thermal treatment conditions to use FOSA efficiently as a cement replacement material. FOSA samples were burned in an electric oven for 2, 4, and 6 h at temperatures ranging from 550 °C to 1000 °C with 150 °C intervals. A total of 333 specimens out of 37 different mixes were prepared and tested with cement replacement ratios between 10% and 30%. The investigated properties included the mineralogical characteristics, chemical elemental analysis, compressive strength, and strength activity index for mortar samples. The findings show that the content of SiO2 + Al2O3 + Fe2O3 was less than 70% in all samples. The strength activity index of the raw FOSA at 56 days exceeded 75%. Among all specimens, the calcined samples for 2 h demonstrated the highest pozzolanic activity and compressive strength with a 75% strength activity index. The model developed by RSM is suitable for the interpretation of FOSA in the cementitious matrix with high degrees of correlation above 85%. The optimal compressive strength was achieved at a 30% replacement level, a temperature of 700 °C for 2 h, and after 56 days of curing.</description><subject>Aluminum oxide</subject><subject>Analysis</subject><subject>Ashes</subject><subject>Cement</subject><subject>Compressive strength</subject><subject>Construction industry</subject><subject>Density</subject><subject>Design of experiments</subject><subject>Gravity</subject><subject>Heat treatment</subject><subject>Methods</subject><subject>Mortars (material)</subject><subject>Oil shale</subject><subject>Oil-shales</subject><subject>Optimization</subject><subject>Particle size</subject><subject>Response surface methodology</subject><subject>Shale oils</subject><subject>Silicon dioxide</subject><subject>Sustainable development</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUttq3DAQNaWlCWle-gWCvpSCU-vmy0thWZImkGWhSZ6FVh57FWTJlezA9uP6bR1nQ28SaAbpnDMXTZa9p8UF503xedBU0qaUvH6VndKmKXPaCPH6L_8kO0_pscDFOa1Z8zY74SXjvK7q0-znJrTgnPU90b4l23Gyg_2hJxs86UIkmxAnHck6DGOElOwTkLspgu-nPbnxJsQxREQj_Rr0lN9HPKElV-5AttaRu712QFZpT3TCAOSy68BMzyrzODoYwKP8gayfPYth50Q2KBGtduQhLcLfII3Bp4USO22AbGDahza40B_eZW867RKcv9iz7OHq8n59nd9uv96sV7e5EYxNueASKCtLI4QEg0ZqwUVd0GJnGO_0jmvTAOdMtJ3ZVUUtmRQMr7FHFBjlZ9mXo-447wZoDSYbtVNjtAOmr4K26t8Xb_eqD0-qkVVRlgIFPr4IxPB9hjSpwSaDndcesGbFKobfKCXlCP3wH_QxzNFjeQtKsIpLuQheHFE9dlhZ3wWMa3C3MFgTPHQW71eVkBVvalEh4dORYGJIKUL3O3taqGWU1J9R4r8ACCW9wA</recordid><startdate>20220921</startdate><enddate>20220921</enddate><creator>Al Salaheen, Marsail</creator><creator>Alaloul, Wesam</creator><creator>Malkawi, Ahmad</creator><creator>de Brito, Jorge</creator><creator>Alzubi, Khalid</creator><creator>Al-Sabaeei, Abdulnaser</creator><creator>Alnarabiji, Mohamad</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7316-6656</orcidid><orcidid>https://orcid.org/0000-0002-1044-6474</orcidid><orcidid>https://orcid.org/0000-0001-6766-2736</orcidid><orcidid>https://orcid.org/0000-0001-7752-3756</orcidid><orcidid>https://orcid.org/0000-0002-3505-6798</orcidid></search><sort><creationdate>20220921</creationdate><title>Modelling and Optimization for Mortar Compressive Strength Incorporating Heat-Treated Fly Oil Shale Ash as an Effective Supplementary Cementitious Material Using Response Surface Methodology</title><author>Al Salaheen, Marsail ; Alaloul, Wesam ; Malkawi, Ahmad ; de Brito, Jorge ; Alzubi, Khalid ; Al-Sabaeei, Abdulnaser ; Alnarabiji, Mohamad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-435e1266c445ec6c45a4348010bc23fab3ac9e3324dfcb70852542ab38781e213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Analysis</topic><topic>Ashes</topic><topic>Cement</topic><topic>Compressive strength</topic><topic>Construction industry</topic><topic>Density</topic><topic>Design of experiments</topic><topic>Gravity</topic><topic>Heat treatment</topic><topic>Methods</topic><topic>Mortars (material)</topic><topic>Oil shale</topic><topic>Oil-shales</topic><topic>Optimization</topic><topic>Particle size</topic><topic>Response surface methodology</topic><topic>Shale oils</topic><topic>Silicon dioxide</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al Salaheen, Marsail</creatorcontrib><creatorcontrib>Alaloul, Wesam</creatorcontrib><creatorcontrib>Malkawi, Ahmad</creatorcontrib><creatorcontrib>de Brito, Jorge</creatorcontrib><creatorcontrib>Alzubi, Khalid</creatorcontrib><creatorcontrib>Al-Sabaeei, Abdulnaser</creatorcontrib><creatorcontrib>Alnarabiji, Mohamad</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al Salaheen, Marsail</au><au>Alaloul, Wesam</au><au>Malkawi, Ahmad</au><au>de Brito, Jorge</au><au>Alzubi, Khalid</au><au>Al-Sabaeei, Abdulnaser</au><au>Alnarabiji, Mohamad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling and Optimization for Mortar Compressive Strength Incorporating Heat-Treated Fly Oil Shale Ash as an Effective Supplementary Cementitious Material Using Response Surface Methodology</atitle><jtitle>Materials</jtitle><date>2022-09-21</date><risdate>2022</risdate><volume>15</volume><issue>19</issue><spage>6538</spage><pages>6538-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Fly oil shale ash (FOSA) is a waste material known for its pozzolanic activity. This study intends to investigate the optimum thermal treatment conditions to use FOSA efficiently as a cement replacement material. FOSA samples were burned in an electric oven for 2, 4, and 6 h at temperatures ranging from 550 °C to 1000 °C with 150 °C intervals. A total of 333 specimens out of 37 different mixes were prepared and tested with cement replacement ratios between 10% and 30%. The investigated properties included the mineralogical characteristics, chemical elemental analysis, compressive strength, and strength activity index for mortar samples. The findings show that the content of SiO2 + Al2O3 + Fe2O3 was less than 70% in all samples. The strength activity index of the raw FOSA at 56 days exceeded 75%. Among all specimens, the calcined samples for 2 h demonstrated the highest pozzolanic activity and compressive strength with a 75% strength activity index. The model developed by RSM is suitable for the interpretation of FOSA in the cementitious matrix with high degrees of correlation above 85%. The optimal compressive strength was achieved at a 30% replacement level, a temperature of 700 °C for 2 h, and after 56 days of curing.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36233878</pmid><doi>10.3390/ma15196538</doi><orcidid>https://orcid.org/0000-0002-7316-6656</orcidid><orcidid>https://orcid.org/0000-0002-1044-6474</orcidid><orcidid>https://orcid.org/0000-0001-6766-2736</orcidid><orcidid>https://orcid.org/0000-0001-7752-3756</orcidid><orcidid>https://orcid.org/0000-0002-3505-6798</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-09, Vol.15 (19), p.6538 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9570664 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aluminum oxide Analysis Ashes Cement Compressive strength Construction industry Density Design of experiments Gravity Heat treatment Methods Mortars (material) Oil shale Oil-shales Optimization Particle size Response surface methodology Shale oils Silicon dioxide Sustainable development |
title | Modelling and Optimization for Mortar Compressive Strength Incorporating Heat-Treated Fly Oil Shale Ash as an Effective Supplementary Cementitious Material Using Response Surface Methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20and%20Optimization%20for%20Mortar%20Compressive%20Strength%20Incorporating%20Heat-Treated%20Fly%20Oil%20Shale%20Ash%20as%20an%20Effective%20Supplementary%20Cementitious%20Material%20Using%20Response%20Surface%20Methodology&rft.jtitle=Materials&rft.au=Al%20Salaheen,%20Marsail&rft.date=2022-09-21&rft.volume=15&rft.issue=19&rft.spage=6538&rft.pages=6538-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15196538&rft_dat=%3Cgale_pubme%3EA745739847%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724273554&rft_id=info:pmid/36233878&rft_galeid=A745739847&rfr_iscdi=true |