Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode
The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and met...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-09, Vol.23 (19), p.11278 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 11278 |
container_title | International journal of molecular sciences |
container_volume | 23 |
creator | Lakhssassi, Naoufal Knizia, Dounya El Baze, Abdelhalim Lakhssassi, Aicha Meksem, Jonas Meksem, Khalid |
description | The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and methionine and thymidylate synthesis.
is the soybean gene underlying soybean cyst nematode (SCN) resistance at the
locus. GmSHMT08 protein contains four tetrahydrofolate (THF) cofactor binding sites (L129, L135, F284, N374) and six pyridoxal phosphate (PLP) cofactor binding/catalysis sites (Y59, G106, G107, H134, S190A, H218). In the current study, proteomic analysis of a data set of protein complex immunoprecipitated using GmSHMT08 antibodies under SCN infected soybean roots reveals the presence of enriched pathways that mainly use glycine/serine as a substrate (glyoxylate cycle, redox homeostasis, glycolysis, and heme biosynthesis). Root and leaf transcriptomic analysis of differentially expressed genes under SCN infection supported the proteomic data, pointing directly to the involvement of the interconversion reaction carried out by the serine hydroxymethyltransferase enzyme. Direct site mutagenesis revealed that all mutated THF and PLP sites at the GmSHMT08 resulted in increased SCN resistance. We have shown the involvement of PLP sites in SCN resistance. Specially, the effect of the two Y59 and S190 PLP sites was more drastic than the tested THF sites. This unprecedented finding will help us to identify the biological outcomes of THF and PLP residues at the GmSHMT08 and to understand SCN resistance mechanisms. |
doi_str_mv | 10.3390/ijms231911278 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9570156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724284985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-1ba259885c9258ee6e1731e5af8c5a5f7b2b99181e072c1617f97f40648551b93</originalsourceid><addsrcrecordid>eNpVkUFPGzEQhS1EBRR65FpZ4sq2tne9ti-VaNQQpNBGJD1bXmeWOMraqe2NlP_TH9qFUAQnz9N8fvbMQ-iSki9lqchXt-4SK6milAl5hM5oxVhBSC2O39Sn6GNKa0JYybg6Qadl_VQJdYb-zmLIEDpnr_EiGp9sdNt80Pd9NtkFbzbX2PglHvfeHjS-ScnsE36AHQwqrwDf-V3Y7KADn3Fo8feQV3gxGT9fnE1neO4yJGzyM3zbzSf3CyKx84NHcikbbwHngOdh34DxeLRPGf-EzuSwhAv0oTWbBJ9eznP0e_xjMZoU01-3d6ObaWErynNBGzOMJyW3inEJUAMVJQVuWmm54a1oWKMUlRSIYJbWVLRKtBWpK8k5bVR5jr4dfLd908HSDrNEs9Hb6DoT9zoYp993vFvpx7DTigtCeT0YXL0YxPCnh5T1OvRxWFjSTLCKyUpJPlDFgbIxpBShfX2BEv0Uqn4X6sB_fvutV_p_iuU_gWaehw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724284985</pqid></control><display><type>article</type><title>Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Lakhssassi, Naoufal ; Knizia, Dounya ; El Baze, Abdelhalim ; Lakhssassi, Aicha ; Meksem, Jonas ; Meksem, Khalid</creator><creatorcontrib>Lakhssassi, Naoufal ; Knizia, Dounya ; El Baze, Abdelhalim ; Lakhssassi, Aicha ; Meksem, Jonas ; Meksem, Khalid</creatorcontrib><description>The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and methionine and thymidylate synthesis.
is the soybean gene underlying soybean cyst nematode (SCN) resistance at the
locus. GmSHMT08 protein contains four tetrahydrofolate (THF) cofactor binding sites (L129, L135, F284, N374) and six pyridoxal phosphate (PLP) cofactor binding/catalysis sites (Y59, G106, G107, H134, S190A, H218). In the current study, proteomic analysis of a data set of protein complex immunoprecipitated using GmSHMT08 antibodies under SCN infected soybean roots reveals the presence of enriched pathways that mainly use glycine/serine as a substrate (glyoxylate cycle, redox homeostasis, glycolysis, and heme biosynthesis). Root and leaf transcriptomic analysis of differentially expressed genes under SCN infection supported the proteomic data, pointing directly to the involvement of the interconversion reaction carried out by the serine hydroxymethyltransferase enzyme. Direct site mutagenesis revealed that all mutated THF and PLP sites at the GmSHMT08 resulted in increased SCN resistance. We have shown the involvement of PLP sites in SCN resistance. Specially, the effect of the two Y59 and S190 PLP sites was more drastic than the tested THF sites. This unprecedented finding will help us to identify the biological outcomes of THF and PLP residues at the GmSHMT08 and to understand SCN resistance mechanisms.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms231911278</identifier><identifier>PMID: 36232579</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amino acids ; Animals ; Binding sites ; Biosynthesis ; Carbon ; Catalysis ; Cultivars ; Cysts ; Enzymes ; Gene expression ; Glycine ; Glycine - metabolism ; Glycine Hydroxymethyltransferase - chemistry ; Glycine max - metabolism ; Glycolysis ; Glyoxylate cycle ; Glyoxylates ; Heme ; Heterodera glycines ; Homeostasis ; Infections ; Mass spectrometry ; Metabolism ; Metabolites ; Methionine ; Methionine - genetics ; Mutagenesis ; Mutation ; Nematoda - genetics ; Nematodes ; Peptides ; Pest resistance ; Plant Diseases - genetics ; Proteins ; Proteomics ; Purines ; Pyridoxal Phosphate - metabolism ; Scientific imaging ; Serine ; Serine - genetics ; Signal transduction ; Soybeans ; Tetrahydrofolates - genetics ; Tetrahydrofolates - metabolism ; Tetrahydrofolic acid ; Transcriptome ; Transcriptomics</subject><ispartof>International journal of molecular sciences, 2022-09, Vol.23 (19), p.11278</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-1ba259885c9258ee6e1731e5af8c5a5f7b2b99181e072c1617f97f40648551b93</citedby><cites>FETCH-LOGICAL-c415t-1ba259885c9258ee6e1731e5af8c5a5f7b2b99181e072c1617f97f40648551b93</cites><orcidid>0000-0002-8255-9419 ; 0000-0002-9469-9718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570156/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570156/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36232579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakhssassi, Naoufal</creatorcontrib><creatorcontrib>Knizia, Dounya</creatorcontrib><creatorcontrib>El Baze, Abdelhalim</creatorcontrib><creatorcontrib>Lakhssassi, Aicha</creatorcontrib><creatorcontrib>Meksem, Jonas</creatorcontrib><creatorcontrib>Meksem, Khalid</creatorcontrib><title>Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and methionine and thymidylate synthesis.
is the soybean gene underlying soybean cyst nematode (SCN) resistance at the
locus. GmSHMT08 protein contains four tetrahydrofolate (THF) cofactor binding sites (L129, L135, F284, N374) and six pyridoxal phosphate (PLP) cofactor binding/catalysis sites (Y59, G106, G107, H134, S190A, H218). In the current study, proteomic analysis of a data set of protein complex immunoprecipitated using GmSHMT08 antibodies under SCN infected soybean roots reveals the presence of enriched pathways that mainly use glycine/serine as a substrate (glyoxylate cycle, redox homeostasis, glycolysis, and heme biosynthesis). Root and leaf transcriptomic analysis of differentially expressed genes under SCN infection supported the proteomic data, pointing directly to the involvement of the interconversion reaction carried out by the serine hydroxymethyltransferase enzyme. Direct site mutagenesis revealed that all mutated THF and PLP sites at the GmSHMT08 resulted in increased SCN resistance. We have shown the involvement of PLP sites in SCN resistance. Specially, the effect of the two Y59 and S190 PLP sites was more drastic than the tested THF sites. This unprecedented finding will help us to identify the biological outcomes of THF and PLP residues at the GmSHMT08 and to understand SCN resistance mechanisms.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biosynthesis</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Cultivars</subject><subject>Cysts</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Glycine</subject><subject>Glycine - metabolism</subject><subject>Glycine Hydroxymethyltransferase - chemistry</subject><subject>Glycine max - metabolism</subject><subject>Glycolysis</subject><subject>Glyoxylate cycle</subject><subject>Glyoxylates</subject><subject>Heme</subject><subject>Heterodera glycines</subject><subject>Homeostasis</subject><subject>Infections</subject><subject>Mass spectrometry</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methionine</subject><subject>Methionine - genetics</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Nematoda - genetics</subject><subject>Nematodes</subject><subject>Peptides</subject><subject>Pest resistance</subject><subject>Plant Diseases - genetics</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Purines</subject><subject>Pyridoxal Phosphate - metabolism</subject><subject>Scientific imaging</subject><subject>Serine</subject><subject>Serine - genetics</subject><subject>Signal transduction</subject><subject>Soybeans</subject><subject>Tetrahydrofolates - genetics</subject><subject>Tetrahydrofolates - metabolism</subject><subject>Tetrahydrofolic acid</subject><subject>Transcriptome</subject><subject>Transcriptomics</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkUFPGzEQhS1EBRR65FpZ4sq2tne9ti-VaNQQpNBGJD1bXmeWOMraqe2NlP_TH9qFUAQnz9N8fvbMQ-iSki9lqchXt-4SK6milAl5hM5oxVhBSC2O39Sn6GNKa0JYybg6Qadl_VQJdYb-zmLIEDpnr_EiGp9sdNt80Pd9NtkFbzbX2PglHvfeHjS-ScnsE36AHQwqrwDf-V3Y7KADn3Fo8feQV3gxGT9fnE1neO4yJGzyM3zbzSf3CyKx84NHcikbbwHngOdh34DxeLRPGf-EzuSwhAv0oTWbBJ9eznP0e_xjMZoU01-3d6ObaWErynNBGzOMJyW3inEJUAMVJQVuWmm54a1oWKMUlRSIYJbWVLRKtBWpK8k5bVR5jr4dfLd908HSDrNEs9Hb6DoT9zoYp993vFvpx7DTigtCeT0YXL0YxPCnh5T1OvRxWFjSTLCKyUpJPlDFgbIxpBShfX2BEv0Uqn4X6sB_fvutV_p_iuU_gWaehw</recordid><startdate>20220924</startdate><enddate>20220924</enddate><creator>Lakhssassi, Naoufal</creator><creator>Knizia, Dounya</creator><creator>El Baze, Abdelhalim</creator><creator>Lakhssassi, Aicha</creator><creator>Meksem, Jonas</creator><creator>Meksem, Khalid</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8255-9419</orcidid><orcidid>https://orcid.org/0000-0002-9469-9718</orcidid></search><sort><creationdate>20220924</creationdate><title>Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode</title><author>Lakhssassi, Naoufal ; Knizia, Dounya ; El Baze, Abdelhalim ; Lakhssassi, Aicha ; Meksem, Jonas ; Meksem, Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-1ba259885c9258ee6e1731e5af8c5a5f7b2b99181e072c1617f97f40648551b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biosynthesis</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Cultivars</topic><topic>Cysts</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Glycine</topic><topic>Glycine - metabolism</topic><topic>Glycine Hydroxymethyltransferase - chemistry</topic><topic>Glycine max - metabolism</topic><topic>Glycolysis</topic><topic>Glyoxylate cycle</topic><topic>Glyoxylates</topic><topic>Heme</topic><topic>Heterodera glycines</topic><topic>Homeostasis</topic><topic>Infections</topic><topic>Mass spectrometry</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methionine</topic><topic>Methionine - genetics</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Nematoda - genetics</topic><topic>Nematodes</topic><topic>Peptides</topic><topic>Pest resistance</topic><topic>Plant Diseases - genetics</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Purines</topic><topic>Pyridoxal Phosphate - metabolism</topic><topic>Scientific imaging</topic><topic>Serine</topic><topic>Serine - genetics</topic><topic>Signal transduction</topic><topic>Soybeans</topic><topic>Tetrahydrofolates - genetics</topic><topic>Tetrahydrofolates - metabolism</topic><topic>Tetrahydrofolic acid</topic><topic>Transcriptome</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakhssassi, Naoufal</creatorcontrib><creatorcontrib>Knizia, Dounya</creatorcontrib><creatorcontrib>El Baze, Abdelhalim</creatorcontrib><creatorcontrib>Lakhssassi, Aicha</creatorcontrib><creatorcontrib>Meksem, Jonas</creatorcontrib><creatorcontrib>Meksem, Khalid</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakhssassi, Naoufal</au><au>Knizia, Dounya</au><au>El Baze, Abdelhalim</au><au>Lakhssassi, Aicha</au><au>Meksem, Jonas</au><au>Meksem, Khalid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-09-24</date><risdate>2022</risdate><volume>23</volume><issue>19</issue><spage>11278</spage><pages>11278-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and methionine and thymidylate synthesis.
is the soybean gene underlying soybean cyst nematode (SCN) resistance at the
locus. GmSHMT08 protein contains four tetrahydrofolate (THF) cofactor binding sites (L129, L135, F284, N374) and six pyridoxal phosphate (PLP) cofactor binding/catalysis sites (Y59, G106, G107, H134, S190A, H218). In the current study, proteomic analysis of a data set of protein complex immunoprecipitated using GmSHMT08 antibodies under SCN infected soybean roots reveals the presence of enriched pathways that mainly use glycine/serine as a substrate (glyoxylate cycle, redox homeostasis, glycolysis, and heme biosynthesis). Root and leaf transcriptomic analysis of differentially expressed genes under SCN infection supported the proteomic data, pointing directly to the involvement of the interconversion reaction carried out by the serine hydroxymethyltransferase enzyme. Direct site mutagenesis revealed that all mutated THF and PLP sites at the GmSHMT08 resulted in increased SCN resistance. We have shown the involvement of PLP sites in SCN resistance. Specially, the effect of the two Y59 and S190 PLP sites was more drastic than the tested THF sites. This unprecedented finding will help us to identify the biological outcomes of THF and PLP residues at the GmSHMT08 and to understand SCN resistance mechanisms.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36232579</pmid><doi>10.3390/ijms231911278</doi><orcidid>https://orcid.org/0000-0002-8255-9419</orcidid><orcidid>https://orcid.org/0000-0002-9469-9718</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2022-09, Vol.23 (19), p.11278 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9570156 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Amino acids Animals Binding sites Biosynthesis Carbon Catalysis Cultivars Cysts Enzymes Gene expression Glycine Glycine - metabolism Glycine Hydroxymethyltransferase - chemistry Glycine max - metabolism Glycolysis Glyoxylate cycle Glyoxylates Heme Heterodera glycines Homeostasis Infections Mass spectrometry Metabolism Metabolites Methionine Methionine - genetics Mutagenesis Mutation Nematoda - genetics Nematodes Peptides Pest resistance Plant Diseases - genetics Proteins Proteomics Purines Pyridoxal Phosphate - metabolism Scientific imaging Serine Serine - genetics Signal transduction Soybeans Tetrahydrofolates - genetics Tetrahydrofolates - metabolism Tetrahydrofolic acid Transcriptome Transcriptomics |
title | Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomic,%20Transcriptomic,%20Mutational,%20and%20Functional%20Assays%20Reveal%20the%20Involvement%20of%20Both%20THF%20and%20PLP%20Sites%20at%20the%20GmSHMT08%20in%20Resistance%20to%20Soybean%20Cyst%20Nematode&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Lakhssassi,%20Naoufal&rft.date=2022-09-24&rft.volume=23&rft.issue=19&rft.spage=11278&rft.pages=11278-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms231911278&rft_dat=%3Cproquest_pubme%3E2724284985%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724284985&rft_id=info:pmid/36232579&rfr_iscdi=true |