Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode

The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2022-09, Vol.23 (19), p.11278
Hauptverfasser: Lakhssassi, Naoufal, Knizia, Dounya, El Baze, Abdelhalim, Lakhssassi, Aicha, Meksem, Jonas, Meksem, Khalid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 11278
container_title International journal of molecular sciences
container_volume 23
creator Lakhssassi, Naoufal
Knizia, Dounya
El Baze, Abdelhalim
Lakhssassi, Aicha
Meksem, Jonas
Meksem, Khalid
description The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and methionine and thymidylate synthesis. is the soybean gene underlying soybean cyst nematode (SCN) resistance at the locus. GmSHMT08 protein contains four tetrahydrofolate (THF) cofactor binding sites (L129, L135, F284, N374) and six pyridoxal phosphate (PLP) cofactor binding/catalysis sites (Y59, G106, G107, H134, S190A, H218). In the current study, proteomic analysis of a data set of protein complex immunoprecipitated using GmSHMT08 antibodies under SCN infected soybean roots reveals the presence of enriched pathways that mainly use glycine/serine as a substrate (glyoxylate cycle, redox homeostasis, glycolysis, and heme biosynthesis). Root and leaf transcriptomic analysis of differentially expressed genes under SCN infection supported the proteomic data, pointing directly to the involvement of the interconversion reaction carried out by the serine hydroxymethyltransferase enzyme. Direct site mutagenesis revealed that all mutated THF and PLP sites at the GmSHMT08 resulted in increased SCN resistance. We have shown the involvement of PLP sites in SCN resistance. Specially, the effect of the two Y59 and S190 PLP sites was more drastic than the tested THF sites. This unprecedented finding will help us to identify the biological outcomes of THF and PLP residues at the GmSHMT08 and to understand SCN resistance mechanisms.
doi_str_mv 10.3390/ijms231911278
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9570156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724284985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-1ba259885c9258ee6e1731e5af8c5a5f7b2b99181e072c1617f97f40648551b93</originalsourceid><addsrcrecordid>eNpVkUFPGzEQhS1EBRR65FpZ4sq2tne9ti-VaNQQpNBGJD1bXmeWOMraqe2NlP_TH9qFUAQnz9N8fvbMQ-iSki9lqchXt-4SK6milAl5hM5oxVhBSC2O39Sn6GNKa0JYybg6Qadl_VQJdYb-zmLIEDpnr_EiGp9sdNt80Pd9NtkFbzbX2PglHvfeHjS-ScnsE36AHQwqrwDf-V3Y7KADn3Fo8feQV3gxGT9fnE1neO4yJGzyM3zbzSf3CyKx84NHcikbbwHngOdh34DxeLRPGf-EzuSwhAv0oTWbBJ9eznP0e_xjMZoU01-3d6ObaWErynNBGzOMJyW3inEJUAMVJQVuWmm54a1oWKMUlRSIYJbWVLRKtBWpK8k5bVR5jr4dfLd908HSDrNEs9Hb6DoT9zoYp993vFvpx7DTigtCeT0YXL0YxPCnh5T1OvRxWFjSTLCKyUpJPlDFgbIxpBShfX2BEv0Uqn4X6sB_fvutV_p_iuU_gWaehw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724284985</pqid></control><display><type>article</type><title>Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Lakhssassi, Naoufal ; Knizia, Dounya ; El Baze, Abdelhalim ; Lakhssassi, Aicha ; Meksem, Jonas ; Meksem, Khalid</creator><creatorcontrib>Lakhssassi, Naoufal ; Knizia, Dounya ; El Baze, Abdelhalim ; Lakhssassi, Aicha ; Meksem, Jonas ; Meksem, Khalid</creatorcontrib><description>The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and methionine and thymidylate synthesis. is the soybean gene underlying soybean cyst nematode (SCN) resistance at the locus. GmSHMT08 protein contains four tetrahydrofolate (THF) cofactor binding sites (L129, L135, F284, N374) and six pyridoxal phosphate (PLP) cofactor binding/catalysis sites (Y59, G106, G107, H134, S190A, H218). In the current study, proteomic analysis of a data set of protein complex immunoprecipitated using GmSHMT08 antibodies under SCN infected soybean roots reveals the presence of enriched pathways that mainly use glycine/serine as a substrate (glyoxylate cycle, redox homeostasis, glycolysis, and heme biosynthesis). Root and leaf transcriptomic analysis of differentially expressed genes under SCN infection supported the proteomic data, pointing directly to the involvement of the interconversion reaction carried out by the serine hydroxymethyltransferase enzyme. Direct site mutagenesis revealed that all mutated THF and PLP sites at the GmSHMT08 resulted in increased SCN resistance. We have shown the involvement of PLP sites in SCN resistance. Specially, the effect of the two Y59 and S190 PLP sites was more drastic than the tested THF sites. This unprecedented finding will help us to identify the biological outcomes of THF and PLP residues at the GmSHMT08 and to understand SCN resistance mechanisms.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms231911278</identifier><identifier>PMID: 36232579</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amino acids ; Animals ; Binding sites ; Biosynthesis ; Carbon ; Catalysis ; Cultivars ; Cysts ; Enzymes ; Gene expression ; Glycine ; Glycine - metabolism ; Glycine Hydroxymethyltransferase - chemistry ; Glycine max - metabolism ; Glycolysis ; Glyoxylate cycle ; Glyoxylates ; Heme ; Heterodera glycines ; Homeostasis ; Infections ; Mass spectrometry ; Metabolism ; Metabolites ; Methionine ; Methionine - genetics ; Mutagenesis ; Mutation ; Nematoda - genetics ; Nematodes ; Peptides ; Pest resistance ; Plant Diseases - genetics ; Proteins ; Proteomics ; Purines ; Pyridoxal Phosphate - metabolism ; Scientific imaging ; Serine ; Serine - genetics ; Signal transduction ; Soybeans ; Tetrahydrofolates - genetics ; Tetrahydrofolates - metabolism ; Tetrahydrofolic acid ; Transcriptome ; Transcriptomics</subject><ispartof>International journal of molecular sciences, 2022-09, Vol.23 (19), p.11278</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-1ba259885c9258ee6e1731e5af8c5a5f7b2b99181e072c1617f97f40648551b93</citedby><cites>FETCH-LOGICAL-c415t-1ba259885c9258ee6e1731e5af8c5a5f7b2b99181e072c1617f97f40648551b93</cites><orcidid>0000-0002-8255-9419 ; 0000-0002-9469-9718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570156/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570156/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36232579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakhssassi, Naoufal</creatorcontrib><creatorcontrib>Knizia, Dounya</creatorcontrib><creatorcontrib>El Baze, Abdelhalim</creatorcontrib><creatorcontrib>Lakhssassi, Aicha</creatorcontrib><creatorcontrib>Meksem, Jonas</creatorcontrib><creatorcontrib>Meksem, Khalid</creatorcontrib><title>Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and methionine and thymidylate synthesis. is the soybean gene underlying soybean cyst nematode (SCN) resistance at the locus. GmSHMT08 protein contains four tetrahydrofolate (THF) cofactor binding sites (L129, L135, F284, N374) and six pyridoxal phosphate (PLP) cofactor binding/catalysis sites (Y59, G106, G107, H134, S190A, H218). In the current study, proteomic analysis of a data set of protein complex immunoprecipitated using GmSHMT08 antibodies under SCN infected soybean roots reveals the presence of enriched pathways that mainly use glycine/serine as a substrate (glyoxylate cycle, redox homeostasis, glycolysis, and heme biosynthesis). Root and leaf transcriptomic analysis of differentially expressed genes under SCN infection supported the proteomic data, pointing directly to the involvement of the interconversion reaction carried out by the serine hydroxymethyltransferase enzyme. Direct site mutagenesis revealed that all mutated THF and PLP sites at the GmSHMT08 resulted in increased SCN resistance. We have shown the involvement of PLP sites in SCN resistance. Specially, the effect of the two Y59 and S190 PLP sites was more drastic than the tested THF sites. This unprecedented finding will help us to identify the biological outcomes of THF and PLP residues at the GmSHMT08 and to understand SCN resistance mechanisms.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biosynthesis</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Cultivars</subject><subject>Cysts</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Glycine</subject><subject>Glycine - metabolism</subject><subject>Glycine Hydroxymethyltransferase - chemistry</subject><subject>Glycine max - metabolism</subject><subject>Glycolysis</subject><subject>Glyoxylate cycle</subject><subject>Glyoxylates</subject><subject>Heme</subject><subject>Heterodera glycines</subject><subject>Homeostasis</subject><subject>Infections</subject><subject>Mass spectrometry</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methionine</subject><subject>Methionine - genetics</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Nematoda - genetics</subject><subject>Nematodes</subject><subject>Peptides</subject><subject>Pest resistance</subject><subject>Plant Diseases - genetics</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Purines</subject><subject>Pyridoxal Phosphate - metabolism</subject><subject>Scientific imaging</subject><subject>Serine</subject><subject>Serine - genetics</subject><subject>Signal transduction</subject><subject>Soybeans</subject><subject>Tetrahydrofolates - genetics</subject><subject>Tetrahydrofolates - metabolism</subject><subject>Tetrahydrofolic acid</subject><subject>Transcriptome</subject><subject>Transcriptomics</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkUFPGzEQhS1EBRR65FpZ4sq2tne9ti-VaNQQpNBGJD1bXmeWOMraqe2NlP_TH9qFUAQnz9N8fvbMQ-iSki9lqchXt-4SK6milAl5hM5oxVhBSC2O39Sn6GNKa0JYybg6Qadl_VQJdYb-zmLIEDpnr_EiGp9sdNt80Pd9NtkFbzbX2PglHvfeHjS-ScnsE36AHQwqrwDf-V3Y7KADn3Fo8feQV3gxGT9fnE1neO4yJGzyM3zbzSf3CyKx84NHcikbbwHngOdh34DxeLRPGf-EzuSwhAv0oTWbBJ9eznP0e_xjMZoU01-3d6ObaWErynNBGzOMJyW3inEJUAMVJQVuWmm54a1oWKMUlRSIYJbWVLRKtBWpK8k5bVR5jr4dfLd908HSDrNEs9Hb6DoT9zoYp993vFvpx7DTigtCeT0YXL0YxPCnh5T1OvRxWFjSTLCKyUpJPlDFgbIxpBShfX2BEv0Uqn4X6sB_fvutV_p_iuU_gWaehw</recordid><startdate>20220924</startdate><enddate>20220924</enddate><creator>Lakhssassi, Naoufal</creator><creator>Knizia, Dounya</creator><creator>El Baze, Abdelhalim</creator><creator>Lakhssassi, Aicha</creator><creator>Meksem, Jonas</creator><creator>Meksem, Khalid</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8255-9419</orcidid><orcidid>https://orcid.org/0000-0002-9469-9718</orcidid></search><sort><creationdate>20220924</creationdate><title>Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode</title><author>Lakhssassi, Naoufal ; Knizia, Dounya ; El Baze, Abdelhalim ; Lakhssassi, Aicha ; Meksem, Jonas ; Meksem, Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-1ba259885c9258ee6e1731e5af8c5a5f7b2b99181e072c1617f97f40648551b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biosynthesis</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Cultivars</topic><topic>Cysts</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Glycine</topic><topic>Glycine - metabolism</topic><topic>Glycine Hydroxymethyltransferase - chemistry</topic><topic>Glycine max - metabolism</topic><topic>Glycolysis</topic><topic>Glyoxylate cycle</topic><topic>Glyoxylates</topic><topic>Heme</topic><topic>Heterodera glycines</topic><topic>Homeostasis</topic><topic>Infections</topic><topic>Mass spectrometry</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methionine</topic><topic>Methionine - genetics</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Nematoda - genetics</topic><topic>Nematodes</topic><topic>Peptides</topic><topic>Pest resistance</topic><topic>Plant Diseases - genetics</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Purines</topic><topic>Pyridoxal Phosphate - metabolism</topic><topic>Scientific imaging</topic><topic>Serine</topic><topic>Serine - genetics</topic><topic>Signal transduction</topic><topic>Soybeans</topic><topic>Tetrahydrofolates - genetics</topic><topic>Tetrahydrofolates - metabolism</topic><topic>Tetrahydrofolic acid</topic><topic>Transcriptome</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakhssassi, Naoufal</creatorcontrib><creatorcontrib>Knizia, Dounya</creatorcontrib><creatorcontrib>El Baze, Abdelhalim</creatorcontrib><creatorcontrib>Lakhssassi, Aicha</creatorcontrib><creatorcontrib>Meksem, Jonas</creatorcontrib><creatorcontrib>Meksem, Khalid</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakhssassi, Naoufal</au><au>Knizia, Dounya</au><au>El Baze, Abdelhalim</au><au>Lakhssassi, Aicha</au><au>Meksem, Jonas</au><au>Meksem, Khalid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-09-24</date><risdate>2022</risdate><volume>23</volume><issue>19</issue><spage>11278</spage><pages>11278-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and methionine and thymidylate synthesis. is the soybean gene underlying soybean cyst nematode (SCN) resistance at the locus. GmSHMT08 protein contains four tetrahydrofolate (THF) cofactor binding sites (L129, L135, F284, N374) and six pyridoxal phosphate (PLP) cofactor binding/catalysis sites (Y59, G106, G107, H134, S190A, H218). In the current study, proteomic analysis of a data set of protein complex immunoprecipitated using GmSHMT08 antibodies under SCN infected soybean roots reveals the presence of enriched pathways that mainly use glycine/serine as a substrate (glyoxylate cycle, redox homeostasis, glycolysis, and heme biosynthesis). Root and leaf transcriptomic analysis of differentially expressed genes under SCN infection supported the proteomic data, pointing directly to the involvement of the interconversion reaction carried out by the serine hydroxymethyltransferase enzyme. Direct site mutagenesis revealed that all mutated THF and PLP sites at the GmSHMT08 resulted in increased SCN resistance. We have shown the involvement of PLP sites in SCN resistance. Specially, the effect of the two Y59 and S190 PLP sites was more drastic than the tested THF sites. This unprecedented finding will help us to identify the biological outcomes of THF and PLP residues at the GmSHMT08 and to understand SCN resistance mechanisms.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36232579</pmid><doi>10.3390/ijms231911278</doi><orcidid>https://orcid.org/0000-0002-8255-9419</orcidid><orcidid>https://orcid.org/0000-0002-9469-9718</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-09, Vol.23 (19), p.11278
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9570156
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Amino acids
Animals
Binding sites
Biosynthesis
Carbon
Catalysis
Cultivars
Cysts
Enzymes
Gene expression
Glycine
Glycine - metabolism
Glycine Hydroxymethyltransferase - chemistry
Glycine max - metabolism
Glycolysis
Glyoxylate cycle
Glyoxylates
Heme
Heterodera glycines
Homeostasis
Infections
Mass spectrometry
Metabolism
Metabolites
Methionine
Methionine - genetics
Mutagenesis
Mutation
Nematoda - genetics
Nematodes
Peptides
Pest resistance
Plant Diseases - genetics
Proteins
Proteomics
Purines
Pyridoxal Phosphate - metabolism
Scientific imaging
Serine
Serine - genetics
Signal transduction
Soybeans
Tetrahydrofolates - genetics
Tetrahydrofolates - metabolism
Tetrahydrofolic acid
Transcriptome
Transcriptomics
title Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomic,%20Transcriptomic,%20Mutational,%20and%20Functional%20Assays%20Reveal%20the%20Involvement%20of%20Both%20THF%20and%20PLP%20Sites%20at%20the%20GmSHMT08%20in%20Resistance%20to%20Soybean%20Cyst%20Nematode&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Lakhssassi,%20Naoufal&rft.date=2022-09-24&rft.volume=23&rft.issue=19&rft.spage=11278&rft.pages=11278-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms231911278&rft_dat=%3Cproquest_pubme%3E2724284985%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724284985&rft_id=info:pmid/36232579&rfr_iscdi=true