Prevalence and Socioeconomic Correlates of Adult Obesity in Europe: The Feel4Diabetes Study

To effectively tackle obesity, it is necessary to identify all specific socioeconomic factors which contribute to its development. We aimed to highlight the prevalence of adult overweight/obesity in European countries and investigate the association of various socioeconomic factors and their accumul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2022-10, Vol.19 (19), p.12572
Hauptverfasser: Diamantis, Dimitrios V, Karatzi, Kalliopi, Kantaras, Paris, Liatis, Stavros, Iotova, Violeta, Bazdraska, Yulia, Tankova, Tsvetalina, Cardon, Greet, Wikström, Katja, Rurik, Imre, Antal, Emese, Ayala-Marín, Alelí M, Legarre, Natalia Giménez, Makrilakis, Konstantinos, Manios, Yannis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 12572
container_title International journal of environmental research and public health
container_volume 19
creator Diamantis, Dimitrios V
Karatzi, Kalliopi
Kantaras, Paris
Liatis, Stavros
Iotova, Violeta
Bazdraska, Yulia
Tankova, Tsvetalina
Cardon, Greet
Wikström, Katja
Rurik, Imre
Antal, Emese
Ayala-Marín, Alelí M
Legarre, Natalia Giménez
Makrilakis, Konstantinos
Manios, Yannis
description To effectively tackle obesity, it is necessary to identify all specific socioeconomic factors which contribute to its development. We aimed to highlight the prevalence of adult overweight/obesity in European countries and investigate the association of various socioeconomic factors and their accumulative effect on overweight/obesity status. Cross-sectional data from the Feel4Diabetes study for 24,562 adults residing in low socioeconomic areas were collected, representing Belgium, Finland, Greece, Spain, Bulgaria, and Hungary. Socioeconomic Burden Score (SEBS) was created, accounting for unemployment, financial insecurity, and education ≤ 12 years. Data were analyzed using analysis of variance and logistic regression. In total, 19,063 adults with complete data were included (34.5% overweight and 15.8% obese). The highest overweight/obesity rates occurred in Greece (37.5%/17.8%) and Hungary (35.4%/19.7%). After adjusting for confounders, age of
doi_str_mv 10.3390/ijerph191912572
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9566241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725203865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-f1c2d539d9cd82c198567ac0dfc5a48c24f664f64495672e81dba6292d7716923</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxYMoflTP3iTgxUvtJpvNbjwIpVoVChWsJw8hTWZtynZTk12h_71ZrEVlCBOYXx5v8hA6J8l1mopkYJfg1wsiYtEsp3vomHCe9BlPyP6v-xE6CWGZJGnBuDhERymnKSlycozenj18qgpqDVjVBr84bR1oV7uV1XjkvIdKNRCwK_HQtFWDp3MIttlgW-P71rs13ODZAvAYoGJ3Vs2ho1-a1mxO0UGpqgBn295Dr-P72eixP5k-PI2Gk75mlDT9kmhqslQYoU1BNRFFxnOlE1PqTLFCU1ZyHg9jIg4oFMTMFaeCmjwnXNC0h26_ddftfAVGQ914Vcm1tyvlN9IpK_9OaruQ7-5TRj1OGYkCV1sB7z5aCI1c2aChqlQNrg2S5jSj8fN4FtHLf-jStb6O63UUo4wVpHM0-Ka0dyF4KHdmSCK74OS_4OKLi9877PifpNIv_ueU5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724244812</pqid></control><display><type>article</type><title>Prevalence and Socioeconomic Correlates of Adult Obesity in Europe: The Feel4Diabetes Study</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Diamantis, Dimitrios V ; Karatzi, Kalliopi ; Kantaras, Paris ; Liatis, Stavros ; Iotova, Violeta ; Bazdraska, Yulia ; Tankova, Tsvetalina ; Cardon, Greet ; Wikström, Katja ; Rurik, Imre ; Antal, Emese ; Ayala-Marín, Alelí M ; Legarre, Natalia Giménez ; Makrilakis, Konstantinos ; Manios, Yannis</creator><creatorcontrib>Diamantis, Dimitrios V ; Karatzi, Kalliopi ; Kantaras, Paris ; Liatis, Stavros ; Iotova, Violeta ; Bazdraska, Yulia ; Tankova, Tsvetalina ; Cardon, Greet ; Wikström, Katja ; Rurik, Imre ; Antal, Emese ; Ayala-Marín, Alelí M ; Legarre, Natalia Giménez ; Makrilakis, Konstantinos ; Manios, Yannis</creatorcontrib><description>To effectively tackle obesity, it is necessary to identify all specific socioeconomic factors which contribute to its development. We aimed to highlight the prevalence of adult overweight/obesity in European countries and investigate the association of various socioeconomic factors and their accumulative effect on overweight/obesity status. Cross-sectional data from the Feel4Diabetes study for 24,562 adults residing in low socioeconomic areas were collected, representing Belgium, Finland, Greece, Spain, Bulgaria, and Hungary. Socioeconomic Burden Score (SEBS) was created, accounting for unemployment, financial insecurity, and education ≤ 12 years. Data were analyzed using analysis of variance and logistic regression. In total, 19,063 adults with complete data were included (34.5% overweight and 15.8% obese). The highest overweight/obesity rates occurred in Greece (37.5%/17.8%) and Hungary (35.4%/19.7%). After adjusting for confounders, age of &lt;45 years and female sex were inversely associated with overweight/obesity, while low educational level (≤12 years), unemployment, and financial insecurity were positively associated. The increase in SEBS (clustering of socioeconomic disadvantages) was associated with increased overweight/obesity likelihood. This association of SEBS scores with overweight/obesity was evident for males and females across all examined countries, excluding males in low-income countries (Bulgaria and Hungary), where the highest SEBS score was inversely associated with overweight/obesity. The clustering burden of socioeconomic disadvantages on overweight/obesity was found to be influenced by the countries' economic state and sex.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph191912572</identifier><identifier>PMID: 36231871</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accounting ; Adult ; Adults ; Age groups ; Austerity policy ; Body weight ; Clustering ; Cross-Sectional Studies ; Diabetes ; Education ; Educational attainment ; Ethics ; Europe - epidemiology ; Female ; Humans ; Intervention ; Male ; Middle Aged ; Obesity ; Obesity - epidemiology ; Overweight ; Overweight - epidemiology ; Parents &amp; parenting ; Population ; Prevalence ; Social factors ; Socioeconomic Factors ; Socioeconomics ; Statistical analysis ; Unemployment ; Variance analysis</subject><ispartof>International journal of environmental research and public health, 2022-10, Vol.19 (19), p.12572</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-f1c2d539d9cd82c198567ac0dfc5a48c24f664f64495672e81dba6292d7716923</citedby><cites>FETCH-LOGICAL-c421t-f1c2d539d9cd82c198567ac0dfc5a48c24f664f64495672e81dba6292d7716923</cites><orcidid>0000-0001-5453-898X ; 0000-0002-4160-0577 ; 0000-0003-4983-6557 ; 0000-0002-2956-4219 ; 0000-0003-4160-1200 ; 0000-0003-2838-8345 ; 0000-0001-6486-114X ; 0000-0002-7572-1131 ; 0000-0003-0794-2511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9566241/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9566241/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36231871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diamantis, Dimitrios V</creatorcontrib><creatorcontrib>Karatzi, Kalliopi</creatorcontrib><creatorcontrib>Kantaras, Paris</creatorcontrib><creatorcontrib>Liatis, Stavros</creatorcontrib><creatorcontrib>Iotova, Violeta</creatorcontrib><creatorcontrib>Bazdraska, Yulia</creatorcontrib><creatorcontrib>Tankova, Tsvetalina</creatorcontrib><creatorcontrib>Cardon, Greet</creatorcontrib><creatorcontrib>Wikström, Katja</creatorcontrib><creatorcontrib>Rurik, Imre</creatorcontrib><creatorcontrib>Antal, Emese</creatorcontrib><creatorcontrib>Ayala-Marín, Alelí M</creatorcontrib><creatorcontrib>Legarre, Natalia Giménez</creatorcontrib><creatorcontrib>Makrilakis, Konstantinos</creatorcontrib><creatorcontrib>Manios, Yannis</creatorcontrib><title>Prevalence and Socioeconomic Correlates of Adult Obesity in Europe: The Feel4Diabetes Study</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>To effectively tackle obesity, it is necessary to identify all specific socioeconomic factors which contribute to its development. We aimed to highlight the prevalence of adult overweight/obesity in European countries and investigate the association of various socioeconomic factors and their accumulative effect on overweight/obesity status. Cross-sectional data from the Feel4Diabetes study for 24,562 adults residing in low socioeconomic areas were collected, representing Belgium, Finland, Greece, Spain, Bulgaria, and Hungary. Socioeconomic Burden Score (SEBS) was created, accounting for unemployment, financial insecurity, and education ≤ 12 years. Data were analyzed using analysis of variance and logistic regression. In total, 19,063 adults with complete data were included (34.5% overweight and 15.8% obese). The highest overweight/obesity rates occurred in Greece (37.5%/17.8%) and Hungary (35.4%/19.7%). After adjusting for confounders, age of &lt;45 years and female sex were inversely associated with overweight/obesity, while low educational level (≤12 years), unemployment, and financial insecurity were positively associated. The increase in SEBS (clustering of socioeconomic disadvantages) was associated with increased overweight/obesity likelihood. This association of SEBS scores with overweight/obesity was evident for males and females across all examined countries, excluding males in low-income countries (Bulgaria and Hungary), where the highest SEBS score was inversely associated with overweight/obesity. The clustering burden of socioeconomic disadvantages on overweight/obesity was found to be influenced by the countries' economic state and sex.</description><subject>Accounting</subject><subject>Adult</subject><subject>Adults</subject><subject>Age groups</subject><subject>Austerity policy</subject><subject>Body weight</subject><subject>Clustering</subject><subject>Cross-Sectional Studies</subject><subject>Diabetes</subject><subject>Education</subject><subject>Educational attainment</subject><subject>Ethics</subject><subject>Europe - epidemiology</subject><subject>Female</subject><subject>Humans</subject><subject>Intervention</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Obesity</subject><subject>Obesity - epidemiology</subject><subject>Overweight</subject><subject>Overweight - epidemiology</subject><subject>Parents &amp; parenting</subject><subject>Population</subject><subject>Prevalence</subject><subject>Social factors</subject><subject>Socioeconomic Factors</subject><subject>Socioeconomics</subject><subject>Statistical analysis</subject><subject>Unemployment</subject><subject>Variance analysis</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1LAzEQxYMoflTP3iTgxUvtJpvNbjwIpVoVChWsJw8hTWZtynZTk12h_71ZrEVlCBOYXx5v8hA6J8l1mopkYJfg1wsiYtEsp3vomHCe9BlPyP6v-xE6CWGZJGnBuDhERymnKSlycozenj18qgpqDVjVBr84bR1oV7uV1XjkvIdKNRCwK_HQtFWDp3MIttlgW-P71rs13ODZAvAYoGJ3Vs2ho1-a1mxO0UGpqgBn295Dr-P72eixP5k-PI2Gk75mlDT9kmhqslQYoU1BNRFFxnOlE1PqTLFCU1ZyHg9jIg4oFMTMFaeCmjwnXNC0h26_ddftfAVGQ914Vcm1tyvlN9IpK_9OaruQ7-5TRj1OGYkCV1sB7z5aCI1c2aChqlQNrg2S5jSj8fN4FtHLf-jStb6O63UUo4wVpHM0-Ka0dyF4KHdmSCK74OS_4OKLi9877PifpNIv_ueU5Q</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Diamantis, Dimitrios V</creator><creator>Karatzi, Kalliopi</creator><creator>Kantaras, Paris</creator><creator>Liatis, Stavros</creator><creator>Iotova, Violeta</creator><creator>Bazdraska, Yulia</creator><creator>Tankova, Tsvetalina</creator><creator>Cardon, Greet</creator><creator>Wikström, Katja</creator><creator>Rurik, Imre</creator><creator>Antal, Emese</creator><creator>Ayala-Marín, Alelí M</creator><creator>Legarre, Natalia Giménez</creator><creator>Makrilakis, Konstantinos</creator><creator>Manios, Yannis</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5453-898X</orcidid><orcidid>https://orcid.org/0000-0002-4160-0577</orcidid><orcidid>https://orcid.org/0000-0003-4983-6557</orcidid><orcidid>https://orcid.org/0000-0002-2956-4219</orcidid><orcidid>https://orcid.org/0000-0003-4160-1200</orcidid><orcidid>https://orcid.org/0000-0003-2838-8345</orcidid><orcidid>https://orcid.org/0000-0001-6486-114X</orcidid><orcidid>https://orcid.org/0000-0002-7572-1131</orcidid><orcidid>https://orcid.org/0000-0003-0794-2511</orcidid></search><sort><creationdate>20221001</creationdate><title>Prevalence and Socioeconomic Correlates of Adult Obesity in Europe: The Feel4Diabetes Study</title><author>Diamantis, Dimitrios V ; Karatzi, Kalliopi ; Kantaras, Paris ; Liatis, Stavros ; Iotova, Violeta ; Bazdraska, Yulia ; Tankova, Tsvetalina ; Cardon, Greet ; Wikström, Katja ; Rurik, Imre ; Antal, Emese ; Ayala-Marín, Alelí M ; Legarre, Natalia Giménez ; Makrilakis, Konstantinos ; Manios, Yannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-f1c2d539d9cd82c198567ac0dfc5a48c24f664f64495672e81dba6292d7716923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accounting</topic><topic>Adult</topic><topic>Adults</topic><topic>Age groups</topic><topic>Austerity policy</topic><topic>Body weight</topic><topic>Clustering</topic><topic>Cross-Sectional Studies</topic><topic>Diabetes</topic><topic>Education</topic><topic>Educational attainment</topic><topic>Ethics</topic><topic>Europe - epidemiology</topic><topic>Female</topic><topic>Humans</topic><topic>Intervention</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Obesity</topic><topic>Obesity - epidemiology</topic><topic>Overweight</topic><topic>Overweight - epidemiology</topic><topic>Parents &amp; parenting</topic><topic>Population</topic><topic>Prevalence</topic><topic>Social factors</topic><topic>Socioeconomic Factors</topic><topic>Socioeconomics</topic><topic>Statistical analysis</topic><topic>Unemployment</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diamantis, Dimitrios V</creatorcontrib><creatorcontrib>Karatzi, Kalliopi</creatorcontrib><creatorcontrib>Kantaras, Paris</creatorcontrib><creatorcontrib>Liatis, Stavros</creatorcontrib><creatorcontrib>Iotova, Violeta</creatorcontrib><creatorcontrib>Bazdraska, Yulia</creatorcontrib><creatorcontrib>Tankova, Tsvetalina</creatorcontrib><creatorcontrib>Cardon, Greet</creatorcontrib><creatorcontrib>Wikström, Katja</creatorcontrib><creatorcontrib>Rurik, Imre</creatorcontrib><creatorcontrib>Antal, Emese</creatorcontrib><creatorcontrib>Ayala-Marín, Alelí M</creatorcontrib><creatorcontrib>Legarre, Natalia Giménez</creatorcontrib><creatorcontrib>Makrilakis, Konstantinos</creatorcontrib><creatorcontrib>Manios, Yannis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diamantis, Dimitrios V</au><au>Karatzi, Kalliopi</au><au>Kantaras, Paris</au><au>Liatis, Stavros</au><au>Iotova, Violeta</au><au>Bazdraska, Yulia</au><au>Tankova, Tsvetalina</au><au>Cardon, Greet</au><au>Wikström, Katja</au><au>Rurik, Imre</au><au>Antal, Emese</au><au>Ayala-Marín, Alelí M</au><au>Legarre, Natalia Giménez</au><au>Makrilakis, Konstantinos</au><au>Manios, Yannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prevalence and Socioeconomic Correlates of Adult Obesity in Europe: The Feel4Diabetes Study</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>19</volume><issue>19</issue><spage>12572</spage><pages>12572-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>To effectively tackle obesity, it is necessary to identify all specific socioeconomic factors which contribute to its development. We aimed to highlight the prevalence of adult overweight/obesity in European countries and investigate the association of various socioeconomic factors and their accumulative effect on overweight/obesity status. Cross-sectional data from the Feel4Diabetes study for 24,562 adults residing in low socioeconomic areas were collected, representing Belgium, Finland, Greece, Spain, Bulgaria, and Hungary. Socioeconomic Burden Score (SEBS) was created, accounting for unemployment, financial insecurity, and education ≤ 12 years. Data were analyzed using analysis of variance and logistic regression. In total, 19,063 adults with complete data were included (34.5% overweight and 15.8% obese). The highest overweight/obesity rates occurred in Greece (37.5%/17.8%) and Hungary (35.4%/19.7%). After adjusting for confounders, age of &lt;45 years and female sex were inversely associated with overweight/obesity, while low educational level (≤12 years), unemployment, and financial insecurity were positively associated. The increase in SEBS (clustering of socioeconomic disadvantages) was associated with increased overweight/obesity likelihood. This association of SEBS scores with overweight/obesity was evident for males and females across all examined countries, excluding males in low-income countries (Bulgaria and Hungary), where the highest SEBS score was inversely associated with overweight/obesity. The clustering burden of socioeconomic disadvantages on overweight/obesity was found to be influenced by the countries' economic state and sex.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36231871</pmid><doi>10.3390/ijerph191912572</doi><orcidid>https://orcid.org/0000-0001-5453-898X</orcidid><orcidid>https://orcid.org/0000-0002-4160-0577</orcidid><orcidid>https://orcid.org/0000-0003-4983-6557</orcidid><orcidid>https://orcid.org/0000-0002-2956-4219</orcidid><orcidid>https://orcid.org/0000-0003-4160-1200</orcidid><orcidid>https://orcid.org/0000-0003-2838-8345</orcidid><orcidid>https://orcid.org/0000-0001-6486-114X</orcidid><orcidid>https://orcid.org/0000-0002-7572-1131</orcidid><orcidid>https://orcid.org/0000-0003-0794-2511</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2022-10, Vol.19 (19), p.12572
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9566241
source MEDLINE; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accounting
Adult
Adults
Age groups
Austerity policy
Body weight
Clustering
Cross-Sectional Studies
Diabetes
Education
Educational attainment
Ethics
Europe - epidemiology
Female
Humans
Intervention
Male
Middle Aged
Obesity
Obesity - epidemiology
Overweight
Overweight - epidemiology
Parents & parenting
Population
Prevalence
Social factors
Socioeconomic Factors
Socioeconomics
Statistical analysis
Unemployment
Variance analysis
title Prevalence and Socioeconomic Correlates of Adult Obesity in Europe: The Feel4Diabetes Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prevalence%20and%20Socioeconomic%20Correlates%20of%20Adult%20Obesity%20in%20Europe:%20The%20Feel4Diabetes%20Study&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Diamantis,%20Dimitrios%20V&rft.date=2022-10-01&rft.volume=19&rft.issue=19&rft.spage=12572&rft.pages=12572-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph191912572&rft_dat=%3Cproquest_pubme%3E2725203865%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724244812&rft_id=info:pmid/36231871&rfr_iscdi=true