Early Prediction of Diabetes Using an Ensemble of Machine Learning Models
Diabetes is one of the most rapidly spreading diseases in the world, resulting in an array of significant complications, including cardiovascular disease, kidney failure, diabetic retinopathy, and neuropathy, among others, which contribute to an increase in morbidity and mortality rate. If diabetes...
Gespeichert in:
Veröffentlicht in: | International journal of environmental research and public health 2022-09, Vol.19 (19), p.12378 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 12378 |
container_title | International journal of environmental research and public health |
container_volume | 19 |
creator | Dutta, Aishwariya Hasan, Md Kamrul Ahmad, Mohiuddin Awal, Md Abdul Islam, Md Akhtarul Masud, Mehedi Meshref, Hossam |
description | Diabetes is one of the most rapidly spreading diseases in the world, resulting in an array of significant complications, including cardiovascular disease, kidney failure, diabetic retinopathy, and neuropathy, among others, which contribute to an increase in morbidity and mortality rate. If diabetes is diagnosed at an early stage, its severity and underlying risk factors can be significantly reduced. However, there is a shortage of labeled data and the occurrence of outliers or data missingness in clinical datasets that are reliable and effective for diabetes prediction, making it a challenging endeavor. Therefore, we introduce a newly labeled diabetes dataset from a South Asian nation (Bangladesh). In addition, we suggest an automated classification pipeline that includes a weighted ensemble of machine learning (ML) classifiers: Naive Bayes (NB), Random Forest (RF), Decision Tree (DT), XGBoost (XGB), and LightGBM (LGB). Grid search hyperparameter optimization is employed to tune the critical hyperparameters of these ML models. Furthermore, missing value imputation, feature selection, and K-fold cross-validation are included in the framework design. A statistical analysis of variance (ANOVA) test reveals that the performance of diabetes prediction significantly improves when the proposed weighted ensemble (DT + RF + XGB + LGB) is executed with the introduced preprocessing, with the highest accuracy of 0.735 and an area under the ROC curve (AUC) of 0.832. In conjunction with the suggested ensemble model, our statistical imputation and RF-based feature selection techniques produced the best results for early diabetes prediction. Moreover, the presented new dataset will contribute to developing and implementing robust ML models for diabetes prediction utilizing population-level data. |
doi_str_mv | 10.3390/ijerph191912378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9566114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724248760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-e75e0a2e8e29a7ebdc1ca56aec23eddf4c8f943fd4fce8bf941de5e8f0ce0c733</originalsourceid><addsrcrecordid>eNpdUE1PAjEUbIxGED17M5t4XukX3d2LiUFUEoge5Nx021coWbrYLib8e5eABM07vElm3rzJIHRL8ANjBe67JYT1ghTtUJblZ6hLhMApF5icn-AOuopxiTHLuSguUYcJyojI8i4aj1SotslHAON042qf1DZ5dqqEBmIyi87PE-WTkY-wKivYsVOlF85DMgEV_I6f1gaqeI0urKoi3Bx2D81eRp_Dt3Ty_joePk1SzSlpUsgGgBWFHGihMiiNJloNhAJNGRhjuc5twZk13GrIyxYTAwPILdaAdcZYDz3ufdebcgVGg2-CquQ6uJUKW1krJ_8y3i3kvP6WxUAIQnhrcH8wCPXXBmIjl_Um-DazpBnllOeZwK2qv1fpUMcYwB4_ECx33ct_3bcXd6fBjvrfstkP7tiC7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724248760</pqid></control><display><type>article</type><title>Early Prediction of Diabetes Using an Ensemble of Machine Learning Models</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dutta, Aishwariya ; Hasan, Md Kamrul ; Ahmad, Mohiuddin ; Awal, Md Abdul ; Islam, Md Akhtarul ; Masud, Mehedi ; Meshref, Hossam</creator><creatorcontrib>Dutta, Aishwariya ; Hasan, Md Kamrul ; Ahmad, Mohiuddin ; Awal, Md Abdul ; Islam, Md Akhtarul ; Masud, Mehedi ; Meshref, Hossam</creatorcontrib><description>Diabetes is one of the most rapidly spreading diseases in the world, resulting in an array of significant complications, including cardiovascular disease, kidney failure, diabetic retinopathy, and neuropathy, among others, which contribute to an increase in morbidity and mortality rate. If diabetes is diagnosed at an early stage, its severity and underlying risk factors can be significantly reduced. However, there is a shortage of labeled data and the occurrence of outliers or data missingness in clinical datasets that are reliable and effective for diabetes prediction, making it a challenging endeavor. Therefore, we introduce a newly labeled diabetes dataset from a South Asian nation (Bangladesh). In addition, we suggest an automated classification pipeline that includes a weighted ensemble of machine learning (ML) classifiers: Naive Bayes (NB), Random Forest (RF), Decision Tree (DT), XGBoost (XGB), and LightGBM (LGB). Grid search hyperparameter optimization is employed to tune the critical hyperparameters of these ML models. Furthermore, missing value imputation, feature selection, and K-fold cross-validation are included in the framework design. A statistical analysis of variance (ANOVA) test reveals that the performance of diabetes prediction significantly improves when the proposed weighted ensemble (DT + RF + XGB + LGB) is executed with the introduced preprocessing, with the highest accuracy of 0.735 and an area under the ROC curve (AUC) of 0.832. In conjunction with the suggested ensemble model, our statistical imputation and RF-based feature selection techniques produced the best results for early diabetes prediction. Moreover, the presented new dataset will contribute to developing and implementing robust ML models for diabetes prediction utilizing population-level data.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph191912378</identifier><identifier>PMID: 36231678</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Ablation ; Algorithms ; Analysis of Variance ; Area Under Curve ; Bayes Theorem ; Bayesian analysis ; Cardiovascular diseases ; Classification ; Complications ; Datasets ; Diabetes Mellitus ; Discriminant analysis ; Feature selection ; Gestational diabetes ; Glucose ; Humans ; Learning algorithms ; Machine Learning ; Mathematical models ; Medical research ; Morbidity ; Optimization ; Outliers (statistics) ; Predictions ; Renal failure ; Retinopathy ; Risk analysis ; Risk factors ; Statistical analysis ; Support vector machines ; Variance analysis ; Young adults</subject><ispartof>International journal of environmental research and public health, 2022-09, Vol.19 (19), p.12378</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-e75e0a2e8e29a7ebdc1ca56aec23eddf4c8f943fd4fce8bf941de5e8f0ce0c733</citedby><cites>FETCH-LOGICAL-c421t-e75e0a2e8e29a7ebdc1ca56aec23eddf4c8f943fd4fce8bf941de5e8f0ce0c733</cites><orcidid>0000-0003-3028-4932 ; 0000-0001-6019-7245 ; 0000-0003-1292-4350 ; 0000-0001-9123-0618 ; 0000-0003-4258-166X ; 0000-0003-2396-2168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9566114/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9566114/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36231678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta, Aishwariya</creatorcontrib><creatorcontrib>Hasan, Md Kamrul</creatorcontrib><creatorcontrib>Ahmad, Mohiuddin</creatorcontrib><creatorcontrib>Awal, Md Abdul</creatorcontrib><creatorcontrib>Islam, Md Akhtarul</creatorcontrib><creatorcontrib>Masud, Mehedi</creatorcontrib><creatorcontrib>Meshref, Hossam</creatorcontrib><title>Early Prediction of Diabetes Using an Ensemble of Machine Learning Models</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>Diabetes is one of the most rapidly spreading diseases in the world, resulting in an array of significant complications, including cardiovascular disease, kidney failure, diabetic retinopathy, and neuropathy, among others, which contribute to an increase in morbidity and mortality rate. If diabetes is diagnosed at an early stage, its severity and underlying risk factors can be significantly reduced. However, there is a shortage of labeled data and the occurrence of outliers or data missingness in clinical datasets that are reliable and effective for diabetes prediction, making it a challenging endeavor. Therefore, we introduce a newly labeled diabetes dataset from a South Asian nation (Bangladesh). In addition, we suggest an automated classification pipeline that includes a weighted ensemble of machine learning (ML) classifiers: Naive Bayes (NB), Random Forest (RF), Decision Tree (DT), XGBoost (XGB), and LightGBM (LGB). Grid search hyperparameter optimization is employed to tune the critical hyperparameters of these ML models. Furthermore, missing value imputation, feature selection, and K-fold cross-validation are included in the framework design. A statistical analysis of variance (ANOVA) test reveals that the performance of diabetes prediction significantly improves when the proposed weighted ensemble (DT + RF + XGB + LGB) is executed with the introduced preprocessing, with the highest accuracy of 0.735 and an area under the ROC curve (AUC) of 0.832. In conjunction with the suggested ensemble model, our statistical imputation and RF-based feature selection techniques produced the best results for early diabetes prediction. Moreover, the presented new dataset will contribute to developing and implementing robust ML models for diabetes prediction utilizing population-level data.</description><subject>Ablation</subject><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>Area Under Curve</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Cardiovascular diseases</subject><subject>Classification</subject><subject>Complications</subject><subject>Datasets</subject><subject>Diabetes Mellitus</subject><subject>Discriminant analysis</subject><subject>Feature selection</subject><subject>Gestational diabetes</subject><subject>Glucose</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Morbidity</subject><subject>Optimization</subject><subject>Outliers (statistics)</subject><subject>Predictions</subject><subject>Renal failure</subject><subject>Retinopathy</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>Variance analysis</subject><subject>Young adults</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUE1PAjEUbIxGED17M5t4XukX3d2LiUFUEoge5Nx021coWbrYLib8e5eABM07vElm3rzJIHRL8ANjBe67JYT1ghTtUJblZ6hLhMApF5icn-AOuopxiTHLuSguUYcJyojI8i4aj1SotslHAON042qf1DZ5dqqEBmIyi87PE-WTkY-wKivYsVOlF85DMgEV_I6f1gaqeI0urKoi3Bx2D81eRp_Dt3Ty_joePk1SzSlpUsgGgBWFHGihMiiNJloNhAJNGRhjuc5twZk13GrIyxYTAwPILdaAdcZYDz3ufdebcgVGg2-CquQ6uJUKW1krJ_8y3i3kvP6WxUAIQnhrcH8wCPXXBmIjl_Um-DazpBnllOeZwK2qv1fpUMcYwB4_ECx33ct_3bcXd6fBjvrfstkP7tiC7w</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>Dutta, Aishwariya</creator><creator>Hasan, Md Kamrul</creator><creator>Ahmad, Mohiuddin</creator><creator>Awal, Md Abdul</creator><creator>Islam, Md Akhtarul</creator><creator>Masud, Mehedi</creator><creator>Meshref, Hossam</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3028-4932</orcidid><orcidid>https://orcid.org/0000-0001-6019-7245</orcidid><orcidid>https://orcid.org/0000-0003-1292-4350</orcidid><orcidid>https://orcid.org/0000-0001-9123-0618</orcidid><orcidid>https://orcid.org/0000-0003-4258-166X</orcidid><orcidid>https://orcid.org/0000-0003-2396-2168</orcidid></search><sort><creationdate>20220928</creationdate><title>Early Prediction of Diabetes Using an Ensemble of Machine Learning Models</title><author>Dutta, Aishwariya ; Hasan, Md Kamrul ; Ahmad, Mohiuddin ; Awal, Md Abdul ; Islam, Md Akhtarul ; Masud, Mehedi ; Meshref, Hossam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-e75e0a2e8e29a7ebdc1ca56aec23eddf4c8f943fd4fce8bf941de5e8f0ce0c733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>Area Under Curve</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Cardiovascular diseases</topic><topic>Classification</topic><topic>Complications</topic><topic>Datasets</topic><topic>Diabetes Mellitus</topic><topic>Discriminant analysis</topic><topic>Feature selection</topic><topic>Gestational diabetes</topic><topic>Glucose</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Morbidity</topic><topic>Optimization</topic><topic>Outliers (statistics)</topic><topic>Predictions</topic><topic>Renal failure</topic><topic>Retinopathy</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>Variance analysis</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Aishwariya</creatorcontrib><creatorcontrib>Hasan, Md Kamrul</creatorcontrib><creatorcontrib>Ahmad, Mohiuddin</creatorcontrib><creatorcontrib>Awal, Md Abdul</creatorcontrib><creatorcontrib>Islam, Md Akhtarul</creatorcontrib><creatorcontrib>Masud, Mehedi</creatorcontrib><creatorcontrib>Meshref, Hossam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Aishwariya</au><au>Hasan, Md Kamrul</au><au>Ahmad, Mohiuddin</au><au>Awal, Md Abdul</au><au>Islam, Md Akhtarul</au><au>Masud, Mehedi</au><au>Meshref, Hossam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early Prediction of Diabetes Using an Ensemble of Machine Learning Models</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2022-09-28</date><risdate>2022</risdate><volume>19</volume><issue>19</issue><spage>12378</spage><pages>12378-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>Diabetes is one of the most rapidly spreading diseases in the world, resulting in an array of significant complications, including cardiovascular disease, kidney failure, diabetic retinopathy, and neuropathy, among others, which contribute to an increase in morbidity and mortality rate. If diabetes is diagnosed at an early stage, its severity and underlying risk factors can be significantly reduced. However, there is a shortage of labeled data and the occurrence of outliers or data missingness in clinical datasets that are reliable and effective for diabetes prediction, making it a challenging endeavor. Therefore, we introduce a newly labeled diabetes dataset from a South Asian nation (Bangladesh). In addition, we suggest an automated classification pipeline that includes a weighted ensemble of machine learning (ML) classifiers: Naive Bayes (NB), Random Forest (RF), Decision Tree (DT), XGBoost (XGB), and LightGBM (LGB). Grid search hyperparameter optimization is employed to tune the critical hyperparameters of these ML models. Furthermore, missing value imputation, feature selection, and K-fold cross-validation are included in the framework design. A statistical analysis of variance (ANOVA) test reveals that the performance of diabetes prediction significantly improves when the proposed weighted ensemble (DT + RF + XGB + LGB) is executed with the introduced preprocessing, with the highest accuracy of 0.735 and an area under the ROC curve (AUC) of 0.832. In conjunction with the suggested ensemble model, our statistical imputation and RF-based feature selection techniques produced the best results for early diabetes prediction. Moreover, the presented new dataset will contribute to developing and implementing robust ML models for diabetes prediction utilizing population-level data.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36231678</pmid><doi>10.3390/ijerph191912378</doi><orcidid>https://orcid.org/0000-0003-3028-4932</orcidid><orcidid>https://orcid.org/0000-0001-6019-7245</orcidid><orcidid>https://orcid.org/0000-0003-1292-4350</orcidid><orcidid>https://orcid.org/0000-0001-9123-0618</orcidid><orcidid>https://orcid.org/0000-0003-4258-166X</orcidid><orcidid>https://orcid.org/0000-0003-2396-2168</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-4601 |
ispartof | International journal of environmental research and public health, 2022-09, Vol.19 (19), p.12378 |
issn | 1660-4601 1661-7827 1660-4601 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9566114 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Ablation Algorithms Analysis of Variance Area Under Curve Bayes Theorem Bayesian analysis Cardiovascular diseases Classification Complications Datasets Diabetes Mellitus Discriminant analysis Feature selection Gestational diabetes Glucose Humans Learning algorithms Machine Learning Mathematical models Medical research Morbidity Optimization Outliers (statistics) Predictions Renal failure Retinopathy Risk analysis Risk factors Statistical analysis Support vector machines Variance analysis Young adults |
title | Early Prediction of Diabetes Using an Ensemble of Machine Learning Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20Prediction%20of%20Diabetes%20Using%20an%20Ensemble%20of%20Machine%20Learning%20Models&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Dutta,%20Aishwariya&rft.date=2022-09-28&rft.volume=19&rft.issue=19&rft.spage=12378&rft.pages=12378-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph191912378&rft_dat=%3Cproquest_pubme%3E2724248760%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724248760&rft_id=info:pmid/36231678&rfr_iscdi=true |