Feedback linking cell envelope stiffness, curvature, and synthesis enables robust rod-shaped bacterial growth
Bacterial growth is remarkably robust to environmental fluctuations, yet the mechanisms of growth-rate homeostasis are poorly understood. Here, we combine theory and experiment to infer mechanisms by which adapts its growth rate in response to changes in osmolarity, a fundamental physicochemical pro...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-10, Vol.119 (41), p.e2200728119-e2200728119 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2200728119 |
---|---|
container_issue | 41 |
container_start_page | e2200728119 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Al-Mosleh, Salem Gopinathan, Ajay Santangelo, Christian D Huang, Kerwyn Casey Rojas, Enrique R |
description | Bacterial growth is remarkably robust to environmental fluctuations, yet the mechanisms of growth-rate homeostasis are poorly understood. Here, we combine theory and experiment to infer mechanisms by which
adapts its growth rate in response to changes in osmolarity, a fundamental physicochemical property of the environment. The central tenet of our theoretical model is that cell-envelope expansion is only sensitive to local information, such as enzyme concentrations, cell-envelope curvature, and mechanical strain in the envelope. We constrained this model with quantitative measurements of the dynamics of
elongation rate and cell width after hyperosmotic shock. Our analysis demonstrated that adaptive cell-envelope softening is a key process underlying growth-rate homeostasis. Furthermore, our model correctly predicted that softening does not occur above a critical hyperosmotic shock magnitude and precisely recapitulated the elongation-rate dynamics in response to shocks with magnitude larger than this threshold. Finally, we found that, to coordinately achieve growth-rate and cell-width homeostasis, cells employ direct feedback between cell-envelope curvature and envelope expansion. In sum, our analysis points to cellular mechanisms of bacterial growth-rate homeostasis and provides a practical theoretical framework for understanding this process. |
doi_str_mv | 10.1073/pnas.2200728119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9564212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721260605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-2c7a370e76fa878db8d293d622ec0b866b6b971312a95af1686960494f2bcaf3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS1ERZeWMzdkiQuHph3bWX9ckFBFAalSL71bdjLZTZt1gidZ1P8er_rBx-kd5jdPb-Yx9l7AuQCjLqYU6FxKACOtEO4VWwlwotK1g9dsBSBNZWtZH7O3RHcA4NYW3rBjpYUTwqoV210htjE093zo032fNrzBYeCY9jiME3Ka-65LSHTGmyXvw7xkPOMhtZwe0rxF6qnAIQ5IPI9xoblIW9E2TNjyYjxj7sPAN3n8NW9P2VEXBsJ3T3rCbq--3l5-r65vvv24_HJdNbUUcyUbE5QBNLoL1tg22lY61WopsYFotY46OiOUkMGtQye01U5D7epOxiZ06oR9frSdlrjDtsE05zD4Kfe7kB_8GHr_7yT1W78Z996tdQkgi8GnJ4M8_lyQZr_r6fCYkHBcyEtTKA0a1gX9-B96Ny45lesOVGGUElCoi0eqySNRxu4ljAB_aNIfmvR_miwbH_6-4YV_rk79Buk0nBs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726063310</pqid></control><display><type>article</type><title>Feedback linking cell envelope stiffness, curvature, and synthesis enables robust rod-shaped bacterial growth</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Al-Mosleh, Salem ; Gopinathan, Ajay ; Santangelo, Christian D ; Huang, Kerwyn Casey ; Rojas, Enrique R</creator><creatorcontrib>Al-Mosleh, Salem ; Gopinathan, Ajay ; Santangelo, Christian D ; Huang, Kerwyn Casey ; Rojas, Enrique R</creatorcontrib><description>Bacterial growth is remarkably robust to environmental fluctuations, yet the mechanisms of growth-rate homeostasis are poorly understood. Here, we combine theory and experiment to infer mechanisms by which
adapts its growth rate in response to changes in osmolarity, a fundamental physicochemical property of the environment. The central tenet of our theoretical model is that cell-envelope expansion is only sensitive to local information, such as enzyme concentrations, cell-envelope curvature, and mechanical strain in the envelope. We constrained this model with quantitative measurements of the dynamics of
elongation rate and cell width after hyperosmotic shock. Our analysis demonstrated that adaptive cell-envelope softening is a key process underlying growth-rate homeostasis. Furthermore, our model correctly predicted that softening does not occur above a critical hyperosmotic shock magnitude and precisely recapitulated the elongation-rate dynamics in response to shocks with magnitude larger than this threshold. Finally, we found that, to coordinately achieve growth-rate and cell-width homeostasis, cells employ direct feedback between cell-envelope curvature and envelope expansion. In sum, our analysis points to cellular mechanisms of bacterial growth-rate homeostasis and provides a practical theoretical framework for understanding this process.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2200728119</identifier><identifier>PMID: 36191183</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria ; Cell Cycle ; Cell Wall ; Curvature ; E coli ; Elongation ; Escherichia coli ; Feedback ; Growth rate ; Homeostasis ; Mechanical stimuli ; Osmolarity ; Physical Sciences ; Robustness ; Softening ; Stiffness ; Strain</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-10, Vol.119 (41), p.e2200728119-e2200728119</ispartof><rights>Copyright National Academy of Sciences Oct 11, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-2c7a370e76fa878db8d293d622ec0b866b6b971312a95af1686960494f2bcaf3</citedby><cites>FETCH-LOGICAL-c421t-2c7a370e76fa878db8d293d622ec0b866b6b971312a95af1686960494f2bcaf3</cites><orcidid>0000-0002-9369-8780 ; 0000-0002-8043-8138 ; 0000-0002-6988-2991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9564212/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9564212/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36191183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Mosleh, Salem</creatorcontrib><creatorcontrib>Gopinathan, Ajay</creatorcontrib><creatorcontrib>Santangelo, Christian D</creatorcontrib><creatorcontrib>Huang, Kerwyn Casey</creatorcontrib><creatorcontrib>Rojas, Enrique R</creatorcontrib><title>Feedback linking cell envelope stiffness, curvature, and synthesis enables robust rod-shaped bacterial growth</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bacterial growth is remarkably robust to environmental fluctuations, yet the mechanisms of growth-rate homeostasis are poorly understood. Here, we combine theory and experiment to infer mechanisms by which
adapts its growth rate in response to changes in osmolarity, a fundamental physicochemical property of the environment. The central tenet of our theoretical model is that cell-envelope expansion is only sensitive to local information, such as enzyme concentrations, cell-envelope curvature, and mechanical strain in the envelope. We constrained this model with quantitative measurements of the dynamics of
elongation rate and cell width after hyperosmotic shock. Our analysis demonstrated that adaptive cell-envelope softening is a key process underlying growth-rate homeostasis. Furthermore, our model correctly predicted that softening does not occur above a critical hyperosmotic shock magnitude and precisely recapitulated the elongation-rate dynamics in response to shocks with magnitude larger than this threshold. Finally, we found that, to coordinately achieve growth-rate and cell-width homeostasis, cells employ direct feedback between cell-envelope curvature and envelope expansion. In sum, our analysis points to cellular mechanisms of bacterial growth-rate homeostasis and provides a practical theoretical framework for understanding this process.</description><subject>Bacteria</subject><subject>Cell Cycle</subject><subject>Cell Wall</subject><subject>Curvature</subject><subject>E coli</subject><subject>Elongation</subject><subject>Escherichia coli</subject><subject>Feedback</subject><subject>Growth rate</subject><subject>Homeostasis</subject><subject>Mechanical stimuli</subject><subject>Osmolarity</subject><subject>Physical Sciences</subject><subject>Robustness</subject><subject>Softening</subject><subject>Stiffness</subject><subject>Strain</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS1ERZeWMzdkiQuHph3bWX9ckFBFAalSL71bdjLZTZt1gidZ1P8er_rBx-kd5jdPb-Yx9l7AuQCjLqYU6FxKACOtEO4VWwlwotK1g9dsBSBNZWtZH7O3RHcA4NYW3rBjpYUTwqoV210htjE093zo032fNrzBYeCY9jiME3Ka-65LSHTGmyXvw7xkPOMhtZwe0rxF6qnAIQ5IPI9xoblIW9E2TNjyYjxj7sPAN3n8NW9P2VEXBsJ3T3rCbq--3l5-r65vvv24_HJdNbUUcyUbE5QBNLoL1tg22lY61WopsYFotY46OiOUkMGtQye01U5D7epOxiZ06oR9frSdlrjDtsE05zD4Kfe7kB_8GHr_7yT1W78Z996tdQkgi8GnJ4M8_lyQZr_r6fCYkHBcyEtTKA0a1gX9-B96Ny45lesOVGGUElCoi0eqySNRxu4ljAB_aNIfmvR_miwbH_6-4YV_rk79Buk0nBs</recordid><startdate>20221011</startdate><enddate>20221011</enddate><creator>Al-Mosleh, Salem</creator><creator>Gopinathan, Ajay</creator><creator>Santangelo, Christian D</creator><creator>Huang, Kerwyn Casey</creator><creator>Rojas, Enrique R</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9369-8780</orcidid><orcidid>https://orcid.org/0000-0002-8043-8138</orcidid><orcidid>https://orcid.org/0000-0002-6988-2991</orcidid></search><sort><creationdate>20221011</creationdate><title>Feedback linking cell envelope stiffness, curvature, and synthesis enables robust rod-shaped bacterial growth</title><author>Al-Mosleh, Salem ; Gopinathan, Ajay ; Santangelo, Christian D ; Huang, Kerwyn Casey ; Rojas, Enrique R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-2c7a370e76fa878db8d293d622ec0b866b6b971312a95af1686960494f2bcaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bacteria</topic><topic>Cell Cycle</topic><topic>Cell Wall</topic><topic>Curvature</topic><topic>E coli</topic><topic>Elongation</topic><topic>Escherichia coli</topic><topic>Feedback</topic><topic>Growth rate</topic><topic>Homeostasis</topic><topic>Mechanical stimuli</topic><topic>Osmolarity</topic><topic>Physical Sciences</topic><topic>Robustness</topic><topic>Softening</topic><topic>Stiffness</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Mosleh, Salem</creatorcontrib><creatorcontrib>Gopinathan, Ajay</creatorcontrib><creatorcontrib>Santangelo, Christian D</creatorcontrib><creatorcontrib>Huang, Kerwyn Casey</creatorcontrib><creatorcontrib>Rojas, Enrique R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Mosleh, Salem</au><au>Gopinathan, Ajay</au><au>Santangelo, Christian D</au><au>Huang, Kerwyn Casey</au><au>Rojas, Enrique R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feedback linking cell envelope stiffness, curvature, and synthesis enables robust rod-shaped bacterial growth</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-10-11</date><risdate>2022</risdate><volume>119</volume><issue>41</issue><spage>e2200728119</spage><epage>e2200728119</epage><pages>e2200728119-e2200728119</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bacterial growth is remarkably robust to environmental fluctuations, yet the mechanisms of growth-rate homeostasis are poorly understood. Here, we combine theory and experiment to infer mechanisms by which
adapts its growth rate in response to changes in osmolarity, a fundamental physicochemical property of the environment. The central tenet of our theoretical model is that cell-envelope expansion is only sensitive to local information, such as enzyme concentrations, cell-envelope curvature, and mechanical strain in the envelope. We constrained this model with quantitative measurements of the dynamics of
elongation rate and cell width after hyperosmotic shock. Our analysis demonstrated that adaptive cell-envelope softening is a key process underlying growth-rate homeostasis. Furthermore, our model correctly predicted that softening does not occur above a critical hyperosmotic shock magnitude and precisely recapitulated the elongation-rate dynamics in response to shocks with magnitude larger than this threshold. Finally, we found that, to coordinately achieve growth-rate and cell-width homeostasis, cells employ direct feedback between cell-envelope curvature and envelope expansion. In sum, our analysis points to cellular mechanisms of bacterial growth-rate homeostasis and provides a practical theoretical framework for understanding this process.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36191183</pmid><doi>10.1073/pnas.2200728119</doi><orcidid>https://orcid.org/0000-0002-9369-8780</orcidid><orcidid>https://orcid.org/0000-0002-8043-8138</orcidid><orcidid>https://orcid.org/0000-0002-6988-2991</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-10, Vol.119 (41), p.e2200728119-e2200728119 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9564212 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bacteria Cell Cycle Cell Wall Curvature E coli Elongation Escherichia coli Feedback Growth rate Homeostasis Mechanical stimuli Osmolarity Physical Sciences Robustness Softening Stiffness Strain |
title | Feedback linking cell envelope stiffness, curvature, and synthesis enables robust rod-shaped bacterial growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feedback%20linking%20cell%20envelope%20stiffness,%20curvature,%20and%20synthesis%20enables%20robust%20rod-shaped%20bacterial%20growth&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Al-Mosleh,%20Salem&rft.date=2022-10-11&rft.volume=119&rft.issue=41&rft.spage=e2200728119&rft.epage=e2200728119&rft.pages=e2200728119-e2200728119&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2200728119&rft_dat=%3Cproquest_pubme%3E2721260605%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726063310&rft_id=info:pmid/36191183&rfr_iscdi=true |