TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images

Tunneling nanotubes (TNTs) are cellular structures connecting cell membranes and mediating intercellular communication. TNTs are manually identified and counted by a trained investigator; however, this process is time-intensive. We therefore sought to develop an automated approach for quantitative a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2022-10, Vol.14 (19), p.4958
Hauptverfasser: Ceran, Yasin, Ergüder, Hamza, Ladner, Katherine, Korenfeld, Sophie, Deniz, Karina, Padmanabhan, Sanyukta, Wong, Phillip, Baday, Murat, Pengo, Thomas, Lou, Emil, Patel, Chirag B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 4958
container_title Cancers
container_volume 14
creator Ceran, Yasin
Ergüder, Hamza
Ladner, Katherine
Korenfeld, Sophie
Deniz, Karina
Padmanabhan, Sanyukta
Wong, Phillip
Baday, Murat
Pengo, Thomas
Lou, Emil
Patel, Chirag B
description Tunneling nanotubes (TNTs) are cellular structures connecting cell membranes and mediating intercellular communication. TNTs are manually identified and counted by a trained investigator; however, this process is time-intensive. We therefore sought to develop an automated approach for quantitative analysis of TNTs. We used a convolutional neural network (U-Net) deep learning model to segment phase contrast microscopy images of both cancer and non-cancer cells. Our method was composed of preprocessing and model development. We developed a new preprocessing method to label TNTs on a pixel-wise basis. Two sequential models were employed to detect TNTs. First, we identified the regions of images with TNTs by implementing a classification algorithm. Second, we fed parts of the image classified as TNT-containing into a modified U-Net model to estimate TNTs on a pixel-wise basis. The algorithm detected 49.9% of human expert-identified TNTs, counted TNTs, and calculated the number of TNTs per cell, or TNT-to-cell ratio (TCR); it detected TNTs that were not originally detected by the experts. The model had 0.41 precision, 0.26 recall, and 0.32 f-1 score on a test dataset. The predicted and true TCRs were not significantly different across the training and test datasets ( = 0.78). Our automated approach labeled and detected TNTs and cells imaged in culture, resulting in comparable TCRs to those determined by human experts. Future studies will aim to improve on the accuracy, precision, and recall of the algorithm.
doi_str_mv 10.3390/cancers14194958
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9562025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745272059</galeid><sourcerecordid>A745272059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-fa5dc58d2483cfc1097e93166a54ba7da88437868d9d6a453dd8d1c8c8e71a243</originalsourceid><addsrcrecordid>eNptkk1v3CAQhq2qVROlOedWIfXSy27Mlw09VLK2H1lpk142Z8TCeEtkwxZwpPz7YiVNkyhwYIDnfdEMU1VnuF5SKutzo72BmDDDkkku3lTHpG7Jomkke_skPqpOU7qpy6AUt037vjqiDaG1EPi4yturrYUMJi-79RfUoW8AB7QBHb3ze3QZLAyoDxF1Uw6jzmALMeMueKS9Rasw-TyjoUfbyXsY5s2V9iFPO0jIeXTpTAzJhMMdWo96D-lD9a7XQ4LTh_Wkuv7xfbu6WGx-_Vyvus3CMCHyotfcGi4sYYKa3uBatiApbhrN2U63VgvBaCsaYaVtNOPUWmGxEUZAizVh9KT6eu97mHYjWAM-Rz2oQ3SjjncqaKee33j3W-3DrZK8ITXhxeDzg0EMfyZIWY0uGRgG7SFMSZGWcCypwDP66QV6E6boS3ozxQgpf4T_U3s9gHK-D-VdM5uqrmW8kDWXhVq-QpVpYXQmeOhdOX8mOL8XzIVOEfrHHHGt5l5RL3qlKD4-Lc0j_68z6F8YZ7pl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724229491</pqid></control><display><type>article</type><title>TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Ceran, Yasin ; Ergüder, Hamza ; Ladner, Katherine ; Korenfeld, Sophie ; Deniz, Karina ; Padmanabhan, Sanyukta ; Wong, Phillip ; Baday, Murat ; Pengo, Thomas ; Lou, Emil ; Patel, Chirag B</creator><creatorcontrib>Ceran, Yasin ; Ergüder, Hamza ; Ladner, Katherine ; Korenfeld, Sophie ; Deniz, Karina ; Padmanabhan, Sanyukta ; Wong, Phillip ; Baday, Murat ; Pengo, Thomas ; Lou, Emil ; Patel, Chirag B</creatorcontrib><description>Tunneling nanotubes (TNTs) are cellular structures connecting cell membranes and mediating intercellular communication. TNTs are manually identified and counted by a trained investigator; however, this process is time-intensive. We therefore sought to develop an automated approach for quantitative analysis of TNTs. We used a convolutional neural network (U-Net) deep learning model to segment phase contrast microscopy images of both cancer and non-cancer cells. Our method was composed of preprocessing and model development. We developed a new preprocessing method to label TNTs on a pixel-wise basis. Two sequential models were employed to detect TNTs. First, we identified the regions of images with TNTs by implementing a classification algorithm. Second, we fed parts of the image classified as TNT-containing into a modified U-Net model to estimate TNTs on a pixel-wise basis. The algorithm detected 49.9% of human expert-identified TNTs, counted TNTs, and calculated the number of TNTs per cell, or TNT-to-cell ratio (TCR); it detected TNTs that were not originally detected by the experts. The model had 0.41 precision, 0.26 recall, and 0.32 f-1 score on a test dataset. The predicted and true TCRs were not significantly different across the training and test datasets ( = 0.78). Our automated approach labeled and detected TNTs and cells imaged in culture, resulting in comparable TCRs to those determined by human experts. Future studies will aim to improve on the accuracy, precision, and recall of the algorithm.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers14194958</identifier><identifier>PMID: 36230881</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Biomarkers ; Cancer ; Cancer cells ; Cell culture ; Cell membranes ; Deep learning ; Drug screening ; Health aspects ; Identification ; Machine learning ; Microscope and microscopy ; Microscopy ; Nanotubes ; Neural networks ; Observations ; Reproducibility ; Technology application</subject><ispartof>Cancers, 2022-10, Vol.14 (19), p.4958</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-fa5dc58d2483cfc1097e93166a54ba7da88437868d9d6a453dd8d1c8c8e71a243</citedby><cites>FETCH-LOGICAL-c488t-fa5dc58d2483cfc1097e93166a54ba7da88437868d9d6a453dd8d1c8c8e71a243</cites><orcidid>0000-0002-9632-918X ; 0000-0002-1607-1386 ; 0000-0003-0787-0634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562025/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562025/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36230881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ceran, Yasin</creatorcontrib><creatorcontrib>Ergüder, Hamza</creatorcontrib><creatorcontrib>Ladner, Katherine</creatorcontrib><creatorcontrib>Korenfeld, Sophie</creatorcontrib><creatorcontrib>Deniz, Karina</creatorcontrib><creatorcontrib>Padmanabhan, Sanyukta</creatorcontrib><creatorcontrib>Wong, Phillip</creatorcontrib><creatorcontrib>Baday, Murat</creatorcontrib><creatorcontrib>Pengo, Thomas</creatorcontrib><creatorcontrib>Lou, Emil</creatorcontrib><creatorcontrib>Patel, Chirag B</creatorcontrib><title>TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>Tunneling nanotubes (TNTs) are cellular structures connecting cell membranes and mediating intercellular communication. TNTs are manually identified and counted by a trained investigator; however, this process is time-intensive. We therefore sought to develop an automated approach for quantitative analysis of TNTs. We used a convolutional neural network (U-Net) deep learning model to segment phase contrast microscopy images of both cancer and non-cancer cells. Our method was composed of preprocessing and model development. We developed a new preprocessing method to label TNTs on a pixel-wise basis. Two sequential models were employed to detect TNTs. First, we identified the regions of images with TNTs by implementing a classification algorithm. Second, we fed parts of the image classified as TNT-containing into a modified U-Net model to estimate TNTs on a pixel-wise basis. The algorithm detected 49.9% of human expert-identified TNTs, counted TNTs, and calculated the number of TNTs per cell, or TNT-to-cell ratio (TCR); it detected TNTs that were not originally detected by the experts. The model had 0.41 precision, 0.26 recall, and 0.32 f-1 score on a test dataset. The predicted and true TCRs were not significantly different across the training and test datasets ( = 0.78). Our automated approach labeled and detected TNTs and cells imaged in culture, resulting in comparable TCRs to those determined by human experts. Future studies will aim to improve on the accuracy, precision, and recall of the algorithm.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Biomarkers</subject><subject>Cancer</subject><subject>Cancer cells</subject><subject>Cell culture</subject><subject>Cell membranes</subject><subject>Deep learning</subject><subject>Drug screening</subject><subject>Health aspects</subject><subject>Identification</subject><subject>Machine learning</subject><subject>Microscope and microscopy</subject><subject>Microscopy</subject><subject>Nanotubes</subject><subject>Neural networks</subject><subject>Observations</subject><subject>Reproducibility</subject><subject>Technology application</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkk1v3CAQhq2qVROlOedWIfXSy27Mlw09VLK2H1lpk142Z8TCeEtkwxZwpPz7YiVNkyhwYIDnfdEMU1VnuF5SKutzo72BmDDDkkku3lTHpG7Jomkke_skPqpOU7qpy6AUt037vjqiDaG1EPi4yturrYUMJi-79RfUoW8AB7QBHb3ze3QZLAyoDxF1Uw6jzmALMeMueKS9Rasw-TyjoUfbyXsY5s2V9iFPO0jIeXTpTAzJhMMdWo96D-lD9a7XQ4LTh_Wkuv7xfbu6WGx-_Vyvus3CMCHyotfcGi4sYYKa3uBatiApbhrN2U63VgvBaCsaYaVtNOPUWmGxEUZAizVh9KT6eu97mHYjWAM-Rz2oQ3SjjncqaKee33j3W-3DrZK8ITXhxeDzg0EMfyZIWY0uGRgG7SFMSZGWcCypwDP66QV6E6boS3ozxQgpf4T_U3s9gHK-D-VdM5uqrmW8kDWXhVq-QpVpYXQmeOhdOX8mOL8XzIVOEfrHHHGt5l5RL3qlKD4-Lc0j_68z6F8YZ7pl</recordid><startdate>20221010</startdate><enddate>20221010</enddate><creator>Ceran, Yasin</creator><creator>Ergüder, Hamza</creator><creator>Ladner, Katherine</creator><creator>Korenfeld, Sophie</creator><creator>Deniz, Karina</creator><creator>Padmanabhan, Sanyukta</creator><creator>Wong, Phillip</creator><creator>Baday, Murat</creator><creator>Pengo, Thomas</creator><creator>Lou, Emil</creator><creator>Patel, Chirag B</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9632-918X</orcidid><orcidid>https://orcid.org/0000-0002-1607-1386</orcidid><orcidid>https://orcid.org/0000-0003-0787-0634</orcidid></search><sort><creationdate>20221010</creationdate><title>TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images</title><author>Ceran, Yasin ; Ergüder, Hamza ; Ladner, Katherine ; Korenfeld, Sophie ; Deniz, Karina ; Padmanabhan, Sanyukta ; Wong, Phillip ; Baday, Murat ; Pengo, Thomas ; Lou, Emil ; Patel, Chirag B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-fa5dc58d2483cfc1097e93166a54ba7da88437868d9d6a453dd8d1c8c8e71a243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Biomarkers</topic><topic>Cancer</topic><topic>Cancer cells</topic><topic>Cell culture</topic><topic>Cell membranes</topic><topic>Deep learning</topic><topic>Drug screening</topic><topic>Health aspects</topic><topic>Identification</topic><topic>Machine learning</topic><topic>Microscope and microscopy</topic><topic>Microscopy</topic><topic>Nanotubes</topic><topic>Neural networks</topic><topic>Observations</topic><topic>Reproducibility</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ceran, Yasin</creatorcontrib><creatorcontrib>Ergüder, Hamza</creatorcontrib><creatorcontrib>Ladner, Katherine</creatorcontrib><creatorcontrib>Korenfeld, Sophie</creatorcontrib><creatorcontrib>Deniz, Karina</creatorcontrib><creatorcontrib>Padmanabhan, Sanyukta</creatorcontrib><creatorcontrib>Wong, Phillip</creatorcontrib><creatorcontrib>Baday, Murat</creatorcontrib><creatorcontrib>Pengo, Thomas</creatorcontrib><creatorcontrib>Lou, Emil</creatorcontrib><creatorcontrib>Patel, Chirag B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ceran, Yasin</au><au>Ergüder, Hamza</au><au>Ladner, Katherine</au><au>Korenfeld, Sophie</au><au>Deniz, Karina</au><au>Padmanabhan, Sanyukta</au><au>Wong, Phillip</au><au>Baday, Murat</au><au>Pengo, Thomas</au><au>Lou, Emil</au><au>Patel, Chirag B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2022-10-10</date><risdate>2022</risdate><volume>14</volume><issue>19</issue><spage>4958</spage><pages>4958-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Tunneling nanotubes (TNTs) are cellular structures connecting cell membranes and mediating intercellular communication. TNTs are manually identified and counted by a trained investigator; however, this process is time-intensive. We therefore sought to develop an automated approach for quantitative analysis of TNTs. We used a convolutional neural network (U-Net) deep learning model to segment phase contrast microscopy images of both cancer and non-cancer cells. Our method was composed of preprocessing and model development. We developed a new preprocessing method to label TNTs on a pixel-wise basis. Two sequential models were employed to detect TNTs. First, we identified the regions of images with TNTs by implementing a classification algorithm. Second, we fed parts of the image classified as TNT-containing into a modified U-Net model to estimate TNTs on a pixel-wise basis. The algorithm detected 49.9% of human expert-identified TNTs, counted TNTs, and calculated the number of TNTs per cell, or TNT-to-cell ratio (TCR); it detected TNTs that were not originally detected by the experts. The model had 0.41 precision, 0.26 recall, and 0.32 f-1 score on a test dataset. The predicted and true TCRs were not significantly different across the training and test datasets ( = 0.78). Our automated approach labeled and detected TNTs and cells imaged in culture, resulting in comparable TCRs to those determined by human experts. Future studies will aim to improve on the accuracy, precision, and recall of the algorithm.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36230881</pmid><doi>10.3390/cancers14194958</doi><orcidid>https://orcid.org/0000-0002-9632-918X</orcidid><orcidid>https://orcid.org/0000-0002-1607-1386</orcidid><orcidid>https://orcid.org/0000-0003-0787-0634</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2022-10, Vol.14 (19), p.4958
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9562025
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Algorithms
Artificial intelligence
Automation
Biomarkers
Cancer
Cancer cells
Cell culture
Cell membranes
Deep learning
Drug screening
Health aspects
Identification
Machine learning
Microscope and microscopy
Microscopy
Nanotubes
Neural networks
Observations
Reproducibility
Technology application
title TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TNTdetect.AI:%20A%20Deep%20Learning%20Model%20for%20Automated%20Detection%20and%20Counting%20of%20Tunneling%20Nanotubes%20in%20Microscopy%20Images&rft.jtitle=Cancers&rft.au=Ceran,%20Yasin&rft.date=2022-10-10&rft.volume=14&rft.issue=19&rft.spage=4958&rft.pages=4958-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers14194958&rft_dat=%3Cgale_pubme%3EA745272059%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724229491&rft_id=info:pmid/36230881&rft_galeid=A745272059&rfr_iscdi=true