TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images
Tunneling nanotubes (TNTs) are cellular structures connecting cell membranes and mediating intercellular communication. TNTs are manually identified and counted by a trained investigator; however, this process is time-intensive. We therefore sought to develop an automated approach for quantitative a...
Gespeichert in:
Veröffentlicht in: | Cancers 2022-10, Vol.14 (19), p.4958 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 4958 |
container_title | Cancers |
container_volume | 14 |
creator | Ceran, Yasin Ergüder, Hamza Ladner, Katherine Korenfeld, Sophie Deniz, Karina Padmanabhan, Sanyukta Wong, Phillip Baday, Murat Pengo, Thomas Lou, Emil Patel, Chirag B |
description | Tunneling nanotubes (TNTs) are cellular structures connecting cell membranes and mediating intercellular communication. TNTs are manually identified and counted by a trained investigator; however, this process is time-intensive. We therefore sought to develop an automated approach for quantitative analysis of TNTs.
We used a convolutional neural network (U-Net) deep learning model to segment phase contrast microscopy images of both cancer and non-cancer cells. Our method was composed of preprocessing and model development. We developed a new preprocessing method to label TNTs on a pixel-wise basis. Two sequential models were employed to detect TNTs. First, we identified the regions of images with TNTs by implementing a classification algorithm. Second, we fed parts of the image classified as TNT-containing into a modified U-Net model to estimate TNTs on a pixel-wise basis.
The algorithm detected 49.9% of human expert-identified TNTs, counted TNTs, and calculated the number of TNTs per cell, or TNT-to-cell ratio (TCR); it detected TNTs that were not originally detected by the experts. The model had 0.41 precision, 0.26 recall, and 0.32 f-1 score on a test dataset. The predicted and true TCRs were not significantly different across the training and test datasets (
= 0.78).
Our automated approach labeled and detected TNTs and cells imaged in culture, resulting in comparable TCRs to those determined by human experts. Future studies will aim to improve on the accuracy, precision, and recall of the algorithm. |
doi_str_mv | 10.3390/cancers14194958 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9562025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745272059</galeid><sourcerecordid>A745272059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-fa5dc58d2483cfc1097e93166a54ba7da88437868d9d6a453dd8d1c8c8e71a243</originalsourceid><addsrcrecordid>eNptkk1v3CAQhq2qVROlOedWIfXSy27Mlw09VLK2H1lpk142Z8TCeEtkwxZwpPz7YiVNkyhwYIDnfdEMU1VnuF5SKutzo72BmDDDkkku3lTHpG7Jomkke_skPqpOU7qpy6AUt037vjqiDaG1EPi4yturrYUMJi-79RfUoW8AB7QBHb3ze3QZLAyoDxF1Uw6jzmALMeMueKS9Rasw-TyjoUfbyXsY5s2V9iFPO0jIeXTpTAzJhMMdWo96D-lD9a7XQ4LTh_Wkuv7xfbu6WGx-_Vyvus3CMCHyotfcGi4sYYKa3uBatiApbhrN2U63VgvBaCsaYaVtNOPUWmGxEUZAizVh9KT6eu97mHYjWAM-Rz2oQ3SjjncqaKee33j3W-3DrZK8ITXhxeDzg0EMfyZIWY0uGRgG7SFMSZGWcCypwDP66QV6E6boS3ozxQgpf4T_U3s9gHK-D-VdM5uqrmW8kDWXhVq-QpVpYXQmeOhdOX8mOL8XzIVOEfrHHHGt5l5RL3qlKD4-Lc0j_68z6F8YZ7pl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724229491</pqid></control><display><type>article</type><title>TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Ceran, Yasin ; Ergüder, Hamza ; Ladner, Katherine ; Korenfeld, Sophie ; Deniz, Karina ; Padmanabhan, Sanyukta ; Wong, Phillip ; Baday, Murat ; Pengo, Thomas ; Lou, Emil ; Patel, Chirag B</creator><creatorcontrib>Ceran, Yasin ; Ergüder, Hamza ; Ladner, Katherine ; Korenfeld, Sophie ; Deniz, Karina ; Padmanabhan, Sanyukta ; Wong, Phillip ; Baday, Murat ; Pengo, Thomas ; Lou, Emil ; Patel, Chirag B</creatorcontrib><description>Tunneling nanotubes (TNTs) are cellular structures connecting cell membranes and mediating intercellular communication. TNTs are manually identified and counted by a trained investigator; however, this process is time-intensive. We therefore sought to develop an automated approach for quantitative analysis of TNTs.
We used a convolutional neural network (U-Net) deep learning model to segment phase contrast microscopy images of both cancer and non-cancer cells. Our method was composed of preprocessing and model development. We developed a new preprocessing method to label TNTs on a pixel-wise basis. Two sequential models were employed to detect TNTs. First, we identified the regions of images with TNTs by implementing a classification algorithm. Second, we fed parts of the image classified as TNT-containing into a modified U-Net model to estimate TNTs on a pixel-wise basis.
The algorithm detected 49.9% of human expert-identified TNTs, counted TNTs, and calculated the number of TNTs per cell, or TNT-to-cell ratio (TCR); it detected TNTs that were not originally detected by the experts. The model had 0.41 precision, 0.26 recall, and 0.32 f-1 score on a test dataset. The predicted and true TCRs were not significantly different across the training and test datasets (
= 0.78).
Our automated approach labeled and detected TNTs and cells imaged in culture, resulting in comparable TCRs to those determined by human experts. Future studies will aim to improve on the accuracy, precision, and recall of the algorithm.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers14194958</identifier><identifier>PMID: 36230881</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Biomarkers ; Cancer ; Cancer cells ; Cell culture ; Cell membranes ; Deep learning ; Drug screening ; Health aspects ; Identification ; Machine learning ; Microscope and microscopy ; Microscopy ; Nanotubes ; Neural networks ; Observations ; Reproducibility ; Technology application</subject><ispartof>Cancers, 2022-10, Vol.14 (19), p.4958</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-fa5dc58d2483cfc1097e93166a54ba7da88437868d9d6a453dd8d1c8c8e71a243</citedby><cites>FETCH-LOGICAL-c488t-fa5dc58d2483cfc1097e93166a54ba7da88437868d9d6a453dd8d1c8c8e71a243</cites><orcidid>0000-0002-9632-918X ; 0000-0002-1607-1386 ; 0000-0003-0787-0634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562025/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562025/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36230881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ceran, Yasin</creatorcontrib><creatorcontrib>Ergüder, Hamza</creatorcontrib><creatorcontrib>Ladner, Katherine</creatorcontrib><creatorcontrib>Korenfeld, Sophie</creatorcontrib><creatorcontrib>Deniz, Karina</creatorcontrib><creatorcontrib>Padmanabhan, Sanyukta</creatorcontrib><creatorcontrib>Wong, Phillip</creatorcontrib><creatorcontrib>Baday, Murat</creatorcontrib><creatorcontrib>Pengo, Thomas</creatorcontrib><creatorcontrib>Lou, Emil</creatorcontrib><creatorcontrib>Patel, Chirag B</creatorcontrib><title>TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>Tunneling nanotubes (TNTs) are cellular structures connecting cell membranes and mediating intercellular communication. TNTs are manually identified and counted by a trained investigator; however, this process is time-intensive. We therefore sought to develop an automated approach for quantitative analysis of TNTs.
We used a convolutional neural network (U-Net) deep learning model to segment phase contrast microscopy images of both cancer and non-cancer cells. Our method was composed of preprocessing and model development. We developed a new preprocessing method to label TNTs on a pixel-wise basis. Two sequential models were employed to detect TNTs. First, we identified the regions of images with TNTs by implementing a classification algorithm. Second, we fed parts of the image classified as TNT-containing into a modified U-Net model to estimate TNTs on a pixel-wise basis.
The algorithm detected 49.9% of human expert-identified TNTs, counted TNTs, and calculated the number of TNTs per cell, or TNT-to-cell ratio (TCR); it detected TNTs that were not originally detected by the experts. The model had 0.41 precision, 0.26 recall, and 0.32 f-1 score on a test dataset. The predicted and true TCRs were not significantly different across the training and test datasets (
= 0.78).
Our automated approach labeled and detected TNTs and cells imaged in culture, resulting in comparable TCRs to those determined by human experts. Future studies will aim to improve on the accuracy, precision, and recall of the algorithm.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Biomarkers</subject><subject>Cancer</subject><subject>Cancer cells</subject><subject>Cell culture</subject><subject>Cell membranes</subject><subject>Deep learning</subject><subject>Drug screening</subject><subject>Health aspects</subject><subject>Identification</subject><subject>Machine learning</subject><subject>Microscope and microscopy</subject><subject>Microscopy</subject><subject>Nanotubes</subject><subject>Neural networks</subject><subject>Observations</subject><subject>Reproducibility</subject><subject>Technology application</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkk1v3CAQhq2qVROlOedWIfXSy27Mlw09VLK2H1lpk142Z8TCeEtkwxZwpPz7YiVNkyhwYIDnfdEMU1VnuF5SKutzo72BmDDDkkku3lTHpG7Jomkke_skPqpOU7qpy6AUt037vjqiDaG1EPi4yturrYUMJi-79RfUoW8AB7QBHb3ze3QZLAyoDxF1Uw6jzmALMeMueKS9Rasw-TyjoUfbyXsY5s2V9iFPO0jIeXTpTAzJhMMdWo96D-lD9a7XQ4LTh_Wkuv7xfbu6WGx-_Vyvus3CMCHyotfcGi4sYYKa3uBatiApbhrN2U63VgvBaCsaYaVtNOPUWmGxEUZAizVh9KT6eu97mHYjWAM-Rz2oQ3SjjncqaKee33j3W-3DrZK8ITXhxeDzg0EMfyZIWY0uGRgG7SFMSZGWcCypwDP66QV6E6boS3ozxQgpf4T_U3s9gHK-D-VdM5uqrmW8kDWXhVq-QpVpYXQmeOhdOX8mOL8XzIVOEfrHHHGt5l5RL3qlKD4-Lc0j_68z6F8YZ7pl</recordid><startdate>20221010</startdate><enddate>20221010</enddate><creator>Ceran, Yasin</creator><creator>Ergüder, Hamza</creator><creator>Ladner, Katherine</creator><creator>Korenfeld, Sophie</creator><creator>Deniz, Karina</creator><creator>Padmanabhan, Sanyukta</creator><creator>Wong, Phillip</creator><creator>Baday, Murat</creator><creator>Pengo, Thomas</creator><creator>Lou, Emil</creator><creator>Patel, Chirag B</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9632-918X</orcidid><orcidid>https://orcid.org/0000-0002-1607-1386</orcidid><orcidid>https://orcid.org/0000-0003-0787-0634</orcidid></search><sort><creationdate>20221010</creationdate><title>TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images</title><author>Ceran, Yasin ; Ergüder, Hamza ; Ladner, Katherine ; Korenfeld, Sophie ; Deniz, Karina ; Padmanabhan, Sanyukta ; Wong, Phillip ; Baday, Murat ; Pengo, Thomas ; Lou, Emil ; Patel, Chirag B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-fa5dc58d2483cfc1097e93166a54ba7da88437868d9d6a453dd8d1c8c8e71a243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Biomarkers</topic><topic>Cancer</topic><topic>Cancer cells</topic><topic>Cell culture</topic><topic>Cell membranes</topic><topic>Deep learning</topic><topic>Drug screening</topic><topic>Health aspects</topic><topic>Identification</topic><topic>Machine learning</topic><topic>Microscope and microscopy</topic><topic>Microscopy</topic><topic>Nanotubes</topic><topic>Neural networks</topic><topic>Observations</topic><topic>Reproducibility</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ceran, Yasin</creatorcontrib><creatorcontrib>Ergüder, Hamza</creatorcontrib><creatorcontrib>Ladner, Katherine</creatorcontrib><creatorcontrib>Korenfeld, Sophie</creatorcontrib><creatorcontrib>Deniz, Karina</creatorcontrib><creatorcontrib>Padmanabhan, Sanyukta</creatorcontrib><creatorcontrib>Wong, Phillip</creatorcontrib><creatorcontrib>Baday, Murat</creatorcontrib><creatorcontrib>Pengo, Thomas</creatorcontrib><creatorcontrib>Lou, Emil</creatorcontrib><creatorcontrib>Patel, Chirag B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ceran, Yasin</au><au>Ergüder, Hamza</au><au>Ladner, Katherine</au><au>Korenfeld, Sophie</au><au>Deniz, Karina</au><au>Padmanabhan, Sanyukta</au><au>Wong, Phillip</au><au>Baday, Murat</au><au>Pengo, Thomas</au><au>Lou, Emil</au><au>Patel, Chirag B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2022-10-10</date><risdate>2022</risdate><volume>14</volume><issue>19</issue><spage>4958</spage><pages>4958-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Tunneling nanotubes (TNTs) are cellular structures connecting cell membranes and mediating intercellular communication. TNTs are manually identified and counted by a trained investigator; however, this process is time-intensive. We therefore sought to develop an automated approach for quantitative analysis of TNTs.
We used a convolutional neural network (U-Net) deep learning model to segment phase contrast microscopy images of both cancer and non-cancer cells. Our method was composed of preprocessing and model development. We developed a new preprocessing method to label TNTs on a pixel-wise basis. Two sequential models were employed to detect TNTs. First, we identified the regions of images with TNTs by implementing a classification algorithm. Second, we fed parts of the image classified as TNT-containing into a modified U-Net model to estimate TNTs on a pixel-wise basis.
The algorithm detected 49.9% of human expert-identified TNTs, counted TNTs, and calculated the number of TNTs per cell, or TNT-to-cell ratio (TCR); it detected TNTs that were not originally detected by the experts. The model had 0.41 precision, 0.26 recall, and 0.32 f-1 score on a test dataset. The predicted and true TCRs were not significantly different across the training and test datasets (
= 0.78).
Our automated approach labeled and detected TNTs and cells imaged in culture, resulting in comparable TCRs to those determined by human experts. Future studies will aim to improve on the accuracy, precision, and recall of the algorithm.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36230881</pmid><doi>10.3390/cancers14194958</doi><orcidid>https://orcid.org/0000-0002-9632-918X</orcidid><orcidid>https://orcid.org/0000-0002-1607-1386</orcidid><orcidid>https://orcid.org/0000-0003-0787-0634</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2022-10, Vol.14 (19), p.4958 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9562025 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Algorithms Artificial intelligence Automation Biomarkers Cancer Cancer cells Cell culture Cell membranes Deep learning Drug screening Health aspects Identification Machine learning Microscope and microscopy Microscopy Nanotubes Neural networks Observations Reproducibility Technology application |
title | TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TNTdetect.AI:%20A%20Deep%20Learning%20Model%20for%20Automated%20Detection%20and%20Counting%20of%20Tunneling%20Nanotubes%20in%20Microscopy%20Images&rft.jtitle=Cancers&rft.au=Ceran,%20Yasin&rft.date=2022-10-10&rft.volume=14&rft.issue=19&rft.spage=4958&rft.pages=4958-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers14194958&rft_dat=%3Cgale_pubme%3EA745272059%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724229491&rft_id=info:pmid/36230881&rft_galeid=A745272059&rfr_iscdi=true |