BAP1 maintains HIF-dependent interferon beta induction to suppress tumor growth in clear cell renal cell carcinoma
BRCA1-associated protein 1 (BAP1) is a deubiquitinase that is mutated in 10–15% of clear cell renal cell carcinomas (ccRCC). Despite the association between BAP1 loss and poor clinical outcome, the critical tumor suppressor function(s) of BAP1 in ccRCC remains unclear. Previously, we found that hypo...
Gespeichert in:
Veröffentlicht in: | Cancer letters 2022-10, Vol.547, p.215885-215885, Article 215885 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 215885 |
---|---|
container_issue | |
container_start_page | 215885 |
container_title | Cancer letters |
container_volume | 547 |
creator | Langbein, Lauren E. El Hajjar, Rayan He, Shen Sementino, Eleonora Zhong, Zhijiu Jiang, Wei Leiby, Benjamin E. Li, Li Uzzo, Robert G. Testa, Joseph R. Yang, Haifeng |
description | BRCA1-associated protein 1 (BAP1) is a deubiquitinase that is mutated in 10–15% of clear cell renal cell carcinomas (ccRCC). Despite the association between BAP1 loss and poor clinical outcome, the critical tumor suppressor function(s) of BAP1 in ccRCC remains unclear. Previously, we found that hypoxia-inducible factor 2α (HIF2α) and BAP1 activate interferon-stimulated gene factor 3 (ISGF3), a transcription factor activated by type I interferons and a tumor suppressor in ccRCC xenograft models. Here, we aimed to determine the mechanism(s) through which HIF and BAP1 regulate ISGF3. We found that in ccRCC cells, loss of the von Hippel-Lindau tumor suppressor (VHL) activated interferon beta (IFN-β) expression in a HIF2α-dependent manner. IFN-β was required for ISGF3 activation and suppressed the growth of Ren-02 tumors in xenografts. BAP1 enhanced the expression of IFN-β and stimulator of interferon genes (STING), both of which activate ISGF3. Both ISGF3 overexpression and STING agonist treatment increased ISGF3 activity and suppressed BAP1-deficient tumor growth in Ren-02 xenografts. Our results indicate that BAP1 loss reduces type I interferon signaling, and reactivating this pathway may be a novel therapeutic strategy for treating ccRCC.
[Display omitted]
•Loss of VHL and activation of HIF2α increase interferon beta (IFN-β) levels.•IFN-β is required for ISGF3 activation and suppresses tumor growth in xenografts.•BAP1 enhances the expression of IFN-β and STING, activators of ISGF3.•Genetic ISGF3 activation suppresses the growth of BAP1-deficient tumors.•STING agonist activates ISGF3 and hinders the growth of BAP1-deficient tumors. |
doi_str_mv | 10.1016/j.canlet.2022.215885 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9553033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030438352200369X</els_id><sourcerecordid>2705753107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-6bba07cdcc1b9a3c92b5343961f69e4462c719efc50b2380a1f1f73fd66cd4f93</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonR2Gv1HxhD4sbNXPkcho1Jbaxt0kQXuiYMc6blZgZGYGr893IztX4sXBA48JwXXl6EXlKyp4S2bw97Z8MEZc8IY3tGZdfJR2hHO8UapTvyGO0IJ6LhHZcn6FnOB0KIFEo-RSdcai2pIDuU3p99pni2PpQ6Mr68umgGWCAMEAquu5BGSDHgHoqt9bC64mtZIs7rsiTIGZd1jgnfpPi93FYEuwlswg6mCScIdtqWzibnQ5ztc_RktFOGF_fzKfp68eHL-WVz_enj1fnZdeOEpqVp-94S5QbnaK8td5r1kguuWzq2GoRomVNUw-gk6RnviKUjHRUfh7Z1gxg1P0XvNt1l7WcYXDWU7GSW5Gebfphovfn7JPhbcxPvjJaSE86rwJt7gRS_rZCLmX0-erEB4poNU0QqySlRFX39D3qIa6rejxSlTHVEtZUSG-VSzDnB-PAYSswxVHMwW6jmGKrZQq1tr_408tD0K8XfTqF-552HZLLzEBwMPoErZoj-_zf8BItOtps</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711278076</pqid></control><display><type>article</type><title>BAP1 maintains HIF-dependent interferon beta induction to suppress tumor growth in clear cell renal cell carcinoma</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Langbein, Lauren E. ; El Hajjar, Rayan ; He, Shen ; Sementino, Eleonora ; Zhong, Zhijiu ; Jiang, Wei ; Leiby, Benjamin E. ; Li, Li ; Uzzo, Robert G. ; Testa, Joseph R. ; Yang, Haifeng</creator><creatorcontrib>Langbein, Lauren E. ; El Hajjar, Rayan ; He, Shen ; Sementino, Eleonora ; Zhong, Zhijiu ; Jiang, Wei ; Leiby, Benjamin E. ; Li, Li ; Uzzo, Robert G. ; Testa, Joseph R. ; Yang, Haifeng</creatorcontrib><description>BRCA1-associated protein 1 (BAP1) is a deubiquitinase that is mutated in 10–15% of clear cell renal cell carcinomas (ccRCC). Despite the association between BAP1 loss and poor clinical outcome, the critical tumor suppressor function(s) of BAP1 in ccRCC remains unclear. Previously, we found that hypoxia-inducible factor 2α (HIF2α) and BAP1 activate interferon-stimulated gene factor 3 (ISGF3), a transcription factor activated by type I interferons and a tumor suppressor in ccRCC xenograft models. Here, we aimed to determine the mechanism(s) through which HIF and BAP1 regulate ISGF3. We found that in ccRCC cells, loss of the von Hippel-Lindau tumor suppressor (VHL) activated interferon beta (IFN-β) expression in a HIF2α-dependent manner. IFN-β was required for ISGF3 activation and suppressed the growth of Ren-02 tumors in xenografts. BAP1 enhanced the expression of IFN-β and stimulator of interferon genes (STING), both of which activate ISGF3. Both ISGF3 overexpression and STING agonist treatment increased ISGF3 activity and suppressed BAP1-deficient tumor growth in Ren-02 xenografts. Our results indicate that BAP1 loss reduces type I interferon signaling, and reactivating this pathway may be a novel therapeutic strategy for treating ccRCC.
[Display omitted]
•Loss of VHL and activation of HIF2α increase interferon beta (IFN-β) levels.•IFN-β is required for ISGF3 activation and suppresses tumor growth in xenografts.•BAP1 enhances the expression of IFN-β and STING, activators of ISGF3.•Genetic ISGF3 activation suppresses the growth of BAP1-deficient tumors.•STING agonist activates ISGF3 and hinders the growth of BAP1-deficient tumors.</description><identifier>ISSN: 0304-3835</identifier><identifier>ISSN: 1872-7980</identifier><identifier>EISSN: 1872-7980</identifier><identifier>DOI: 10.1016/j.canlet.2022.215885</identifier><identifier>PMID: 35995140</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>BAP1 ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; BRCA1 protein ; Cancer ; Carcinoma, Renal Cell - drug therapy ; Carcinoma, Renal Cell - genetics ; Carcinoma, Renal Cell - pathology ; ccRCC ; Cell growth ; Cell Line, Tumor ; Clear cell-type renal cell carcinoma ; Gene Expression Regulation, Neoplastic ; HIF ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Hypoxia-inducible factors ; Interferon ; Interferon-beta - genetics ; Kidney cancer ; Kidney Neoplasms - drug therapy ; Kidney Neoplasms - genetics ; Kidney Neoplasms - metabolism ; Kinases ; Mutation ; Plasmids ; STING ; Tumor suppressor genes ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism ; Tumors ; Ubiquitin Thiolesterase - genetics ; Ubiquitin Thiolesterase - metabolism ; VHL protein ; Von Hippel-Lindau Tumor Suppressor Protein - genetics ; Von Hippel-Lindau Tumor Suppressor Protein - metabolism ; Xenografts ; β-Interferon</subject><ispartof>Cancer letters, 2022-10, Vol.547, p.215885-215885, Article 215885</ispartof><rights>2022</rights><rights>Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2022. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-6bba07cdcc1b9a3c92b5343961f69e4462c719efc50b2380a1f1f73fd66cd4f93</citedby><cites>FETCH-LOGICAL-c491t-6bba07cdcc1b9a3c92b5343961f69e4462c719efc50b2380a1f1f73fd66cd4f93</cites><orcidid>0000-0002-0892-9055 ; 0000-0002-3007-5287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030438352200369X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35995140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Langbein, Lauren E.</creatorcontrib><creatorcontrib>El Hajjar, Rayan</creatorcontrib><creatorcontrib>He, Shen</creatorcontrib><creatorcontrib>Sementino, Eleonora</creatorcontrib><creatorcontrib>Zhong, Zhijiu</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Leiby, Benjamin E.</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Uzzo, Robert G.</creatorcontrib><creatorcontrib>Testa, Joseph R.</creatorcontrib><creatorcontrib>Yang, Haifeng</creatorcontrib><title>BAP1 maintains HIF-dependent interferon beta induction to suppress tumor growth in clear cell renal cell carcinoma</title><title>Cancer letters</title><addtitle>Cancer Lett</addtitle><description>BRCA1-associated protein 1 (BAP1) is a deubiquitinase that is mutated in 10–15% of clear cell renal cell carcinomas (ccRCC). Despite the association between BAP1 loss and poor clinical outcome, the critical tumor suppressor function(s) of BAP1 in ccRCC remains unclear. Previously, we found that hypoxia-inducible factor 2α (HIF2α) and BAP1 activate interferon-stimulated gene factor 3 (ISGF3), a transcription factor activated by type I interferons and a tumor suppressor in ccRCC xenograft models. Here, we aimed to determine the mechanism(s) through which HIF and BAP1 regulate ISGF3. We found that in ccRCC cells, loss of the von Hippel-Lindau tumor suppressor (VHL) activated interferon beta (IFN-β) expression in a HIF2α-dependent manner. IFN-β was required for ISGF3 activation and suppressed the growth of Ren-02 tumors in xenografts. BAP1 enhanced the expression of IFN-β and stimulator of interferon genes (STING), both of which activate ISGF3. Both ISGF3 overexpression and STING agonist treatment increased ISGF3 activity and suppressed BAP1-deficient tumor growth in Ren-02 xenografts. Our results indicate that BAP1 loss reduces type I interferon signaling, and reactivating this pathway may be a novel therapeutic strategy for treating ccRCC.
[Display omitted]
•Loss of VHL and activation of HIF2α increase interferon beta (IFN-β) levels.•IFN-β is required for ISGF3 activation and suppresses tumor growth in xenografts.•BAP1 enhances the expression of IFN-β and STING, activators of ISGF3.•Genetic ISGF3 activation suppresses the growth of BAP1-deficient tumors.•STING agonist activates ISGF3 and hinders the growth of BAP1-deficient tumors.</description><subject>BAP1</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>BRCA1 protein</subject><subject>Cancer</subject><subject>Carcinoma, Renal Cell - drug therapy</subject><subject>Carcinoma, Renal Cell - genetics</subject><subject>Carcinoma, Renal Cell - pathology</subject><subject>ccRCC</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Clear cell-type renal cell carcinoma</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>HIF</subject><subject>Humans</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Hypoxia-inducible factors</subject><subject>Interferon</subject><subject>Interferon-beta - genetics</subject><subject>Kidney cancer</subject><subject>Kidney Neoplasms - drug therapy</subject><subject>Kidney Neoplasms - genetics</subject><subject>Kidney Neoplasms - metabolism</subject><subject>Kinases</subject><subject>Mutation</subject><subject>Plasmids</subject><subject>STING</subject><subject>Tumor suppressor genes</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><subject>Tumors</subject><subject>Ubiquitin Thiolesterase - genetics</subject><subject>Ubiquitin Thiolesterase - metabolism</subject><subject>VHL protein</subject><subject>Von Hippel-Lindau Tumor Suppressor Protein - genetics</subject><subject>Von Hippel-Lindau Tumor Suppressor Protein - metabolism</subject><subject>Xenografts</subject><subject>β-Interferon</subject><issn>0304-3835</issn><issn>1872-7980</issn><issn>1872-7980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1vFSEUhonR2Gv1HxhD4sbNXPkcho1Jbaxt0kQXuiYMc6blZgZGYGr893IztX4sXBA48JwXXl6EXlKyp4S2bw97Z8MEZc8IY3tGZdfJR2hHO8UapTvyGO0IJ6LhHZcn6FnOB0KIFEo-RSdcai2pIDuU3p99pni2PpQ6Mr68umgGWCAMEAquu5BGSDHgHoqt9bC64mtZIs7rsiTIGZd1jgnfpPi93FYEuwlswg6mCScIdtqWzibnQ5ztc_RktFOGF_fzKfp68eHL-WVz_enj1fnZdeOEpqVp-94S5QbnaK8td5r1kguuWzq2GoRomVNUw-gk6RnviKUjHRUfh7Z1gxg1P0XvNt1l7WcYXDWU7GSW5Gebfphovfn7JPhbcxPvjJaSE86rwJt7gRS_rZCLmX0-erEB4poNU0QqySlRFX39D3qIa6rejxSlTHVEtZUSG-VSzDnB-PAYSswxVHMwW6jmGKrZQq1tr_408tD0K8XfTqF-552HZLLzEBwMPoErZoj-_zf8BItOtps</recordid><startdate>20221028</startdate><enddate>20221028</enddate><creator>Langbein, Lauren E.</creator><creator>El Hajjar, Rayan</creator><creator>He, Shen</creator><creator>Sementino, Eleonora</creator><creator>Zhong, Zhijiu</creator><creator>Jiang, Wei</creator><creator>Leiby, Benjamin E.</creator><creator>Li, Li</creator><creator>Uzzo, Robert G.</creator><creator>Testa, Joseph R.</creator><creator>Yang, Haifeng</creator><general>Elsevier B.V</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0892-9055</orcidid><orcidid>https://orcid.org/0000-0002-3007-5287</orcidid></search><sort><creationdate>20221028</creationdate><title>BAP1 maintains HIF-dependent interferon beta induction to suppress tumor growth in clear cell renal cell carcinoma</title><author>Langbein, Lauren E. ; El Hajjar, Rayan ; He, Shen ; Sementino, Eleonora ; Zhong, Zhijiu ; Jiang, Wei ; Leiby, Benjamin E. ; Li, Li ; Uzzo, Robert G. ; Testa, Joseph R. ; Yang, Haifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-6bba07cdcc1b9a3c92b5343961f69e4462c719efc50b2380a1f1f73fd66cd4f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>BAP1</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>BRCA1 protein</topic><topic>Cancer</topic><topic>Carcinoma, Renal Cell - drug therapy</topic><topic>Carcinoma, Renal Cell - genetics</topic><topic>Carcinoma, Renal Cell - pathology</topic><topic>ccRCC</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Clear cell-type renal cell carcinoma</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>HIF</topic><topic>Humans</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Hypoxia-inducible factors</topic><topic>Interferon</topic><topic>Interferon-beta - genetics</topic><topic>Kidney cancer</topic><topic>Kidney Neoplasms - drug therapy</topic><topic>Kidney Neoplasms - genetics</topic><topic>Kidney Neoplasms - metabolism</topic><topic>Kinases</topic><topic>Mutation</topic><topic>Plasmids</topic><topic>STING</topic><topic>Tumor suppressor genes</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><topic>Tumors</topic><topic>Ubiquitin Thiolesterase - genetics</topic><topic>Ubiquitin Thiolesterase - metabolism</topic><topic>VHL protein</topic><topic>Von Hippel-Lindau Tumor Suppressor Protein - genetics</topic><topic>Von Hippel-Lindau Tumor Suppressor Protein - metabolism</topic><topic>Xenografts</topic><topic>β-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langbein, Lauren E.</creatorcontrib><creatorcontrib>El Hajjar, Rayan</creatorcontrib><creatorcontrib>He, Shen</creatorcontrib><creatorcontrib>Sementino, Eleonora</creatorcontrib><creatorcontrib>Zhong, Zhijiu</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Leiby, Benjamin E.</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Uzzo, Robert G.</creatorcontrib><creatorcontrib>Testa, Joseph R.</creatorcontrib><creatorcontrib>Yang, Haifeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langbein, Lauren E.</au><au>El Hajjar, Rayan</au><au>He, Shen</au><au>Sementino, Eleonora</au><au>Zhong, Zhijiu</au><au>Jiang, Wei</au><au>Leiby, Benjamin E.</au><au>Li, Li</au><au>Uzzo, Robert G.</au><au>Testa, Joseph R.</au><au>Yang, Haifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BAP1 maintains HIF-dependent interferon beta induction to suppress tumor growth in clear cell renal cell carcinoma</atitle><jtitle>Cancer letters</jtitle><addtitle>Cancer Lett</addtitle><date>2022-10-28</date><risdate>2022</risdate><volume>547</volume><spage>215885</spage><epage>215885</epage><pages>215885-215885</pages><artnum>215885</artnum><issn>0304-3835</issn><issn>1872-7980</issn><eissn>1872-7980</eissn><abstract>BRCA1-associated protein 1 (BAP1) is a deubiquitinase that is mutated in 10–15% of clear cell renal cell carcinomas (ccRCC). Despite the association between BAP1 loss and poor clinical outcome, the critical tumor suppressor function(s) of BAP1 in ccRCC remains unclear. Previously, we found that hypoxia-inducible factor 2α (HIF2α) and BAP1 activate interferon-stimulated gene factor 3 (ISGF3), a transcription factor activated by type I interferons and a tumor suppressor in ccRCC xenograft models. Here, we aimed to determine the mechanism(s) through which HIF and BAP1 regulate ISGF3. We found that in ccRCC cells, loss of the von Hippel-Lindau tumor suppressor (VHL) activated interferon beta (IFN-β) expression in a HIF2α-dependent manner. IFN-β was required for ISGF3 activation and suppressed the growth of Ren-02 tumors in xenografts. BAP1 enhanced the expression of IFN-β and stimulator of interferon genes (STING), both of which activate ISGF3. Both ISGF3 overexpression and STING agonist treatment increased ISGF3 activity and suppressed BAP1-deficient tumor growth in Ren-02 xenografts. Our results indicate that BAP1 loss reduces type I interferon signaling, and reactivating this pathway may be a novel therapeutic strategy for treating ccRCC.
[Display omitted]
•Loss of VHL and activation of HIF2α increase interferon beta (IFN-β) levels.•IFN-β is required for ISGF3 activation and suppresses tumor growth in xenografts.•BAP1 enhances the expression of IFN-β and STING, activators of ISGF3.•Genetic ISGF3 activation suppresses the growth of BAP1-deficient tumors.•STING agonist activates ISGF3 and hinders the growth of BAP1-deficient tumors.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>35995140</pmid><doi>10.1016/j.canlet.2022.215885</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0892-9055</orcidid><orcidid>https://orcid.org/0000-0002-3007-5287</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3835 |
ispartof | Cancer letters, 2022-10, Vol.547, p.215885-215885, Article 215885 |
issn | 0304-3835 1872-7980 1872-7980 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9553033 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | BAP1 Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism BRCA1 protein Cancer Carcinoma, Renal Cell - drug therapy Carcinoma, Renal Cell - genetics Carcinoma, Renal Cell - pathology ccRCC Cell growth Cell Line, Tumor Clear cell-type renal cell carcinoma Gene Expression Regulation, Neoplastic HIF Humans Hypoxia-Inducible Factor 1, alpha Subunit - genetics Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Hypoxia-inducible factors Interferon Interferon-beta - genetics Kidney cancer Kidney Neoplasms - drug therapy Kidney Neoplasms - genetics Kidney Neoplasms - metabolism Kinases Mutation Plasmids STING Tumor suppressor genes Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - metabolism Tumors Ubiquitin Thiolesterase - genetics Ubiquitin Thiolesterase - metabolism VHL protein Von Hippel-Lindau Tumor Suppressor Protein - genetics Von Hippel-Lindau Tumor Suppressor Protein - metabolism Xenografts β-Interferon |
title | BAP1 maintains HIF-dependent interferon beta induction to suppress tumor growth in clear cell renal cell carcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BAP1%20maintains%20HIF-dependent%20interferon%20beta%20induction%20to%20suppress%20tumor%20growth%20in%20clear%20cell%20renal%20cell%20carcinoma&rft.jtitle=Cancer%20letters&rft.au=Langbein,%20Lauren%20E.&rft.date=2022-10-28&rft.volume=547&rft.spage=215885&rft.epage=215885&rft.pages=215885-215885&rft.artnum=215885&rft.issn=0304-3835&rft.eissn=1872-7980&rft_id=info:doi/10.1016/j.canlet.2022.215885&rft_dat=%3Cproquest_pubme%3E2705753107%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711278076&rft_id=info:pmid/35995140&rft_els_id=S030438352200369X&rfr_iscdi=true |