Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals
In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimoda...
Gespeichert in:
Veröffentlicht in: | Neuroinformatics (Totowa, N.J.) N.J.), 2022-07, Vol.20 (3), p.537-558 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 558 |
---|---|
container_issue | 3 |
container_start_page | 537 |
container_title | Neuroinformatics (Totowa, N.J.) |
container_volume | 20 |
creator | Sirpal, Parikshat Damseh, Rafat Peng, Ke Nguyen, Dang Khoa Lesage, Frédéric |
description | In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional connectivity validates similar patterns between experimental fNIRS and our model’s fNIRS reconstructions. This is the first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific hypotheses about how EEG frequency bands decode fNIRS signals. |
doi_str_mv | 10.1007/s12021-021-09538-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9547786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722747421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4f6a4d54bef2af4d497ad71aec47361e7696203f623831fd415cef1647acc9893</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0EglL4AxxQJC5cAt4SxxckVNpSqSxq4Wy5jl2CkrjYCRL_HnehLAcOo7E037zx0wPgBMELBCG79AhDjOJV8YRkMdkBHZQkPIYw47vLN-ExZhwdgEPvXyHEKYNwHxwQSlgWyA64uWvLpqhsLsvoum2srpXNtYsenc4L1fjI3I8m02iifVPU82jayEZHA2erqN8fRtNiXsvSH4E9E5o-3vQueB70n3q38fhhOOpdj2NFGW1ialJJ84TOtMHS0JxyJnOGpA5jkiLNUp5iSEyKSUaQySlKlDYopUwqxTNOuuBqrbtoZ5XOla4bJ0uxcEUl3YewshC_J3XxIub2XfCEMpalQeB8I-DsWxs8iarwSpelrLVtvcDhNEwyiLKAnv1BX23rlm4FZhiz4AijQOE1pZz13mmz_QyCYhmSWIckVrUMSZCwdPrTxnblK5UAkDXgw6iea_d9-x_ZTxBVnAM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722747421</pqid></control><display><type>article</type><title>Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Sirpal, Parikshat ; Damseh, Rafat ; Peng, Ke ; Nguyen, Dang Khoa ; Lesage, Frédéric</creator><creatorcontrib>Sirpal, Parikshat ; Damseh, Rafat ; Peng, Ke ; Nguyen, Dang Khoa ; Lesage, Frédéric</creatorcontrib><description>In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional connectivity validates similar patterns between experimental fNIRS and our model’s fNIRS reconstructions. This is the first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific hypotheses about how EEG frequency bands decode fNIRS signals.</description><identifier>ISSN: 1539-2791</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-021-09538-3</identifier><identifier>PMID: 34378155</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - diagnostic imaging ; Brain Mapping - methods ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Deep learning ; EEG ; Electroencephalography - methods ; Epilepsy ; Epilepsy - diagnostic imaging ; Hemodynamics ; Humans ; Infrared spectroscopy ; Long short-term memory ; Neural networks ; Neurology ; Neurosciences ; Original ; Original Article ; Oscillations ; Spectroscopy, Near-Infrared - methods ; Spectrum analysis</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2022-07, Vol.20 (3), p.537-558</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-4f6a4d54bef2af4d497ad71aec47361e7696203f623831fd415cef1647acc9893</citedby><cites>FETCH-LOGICAL-c474t-4f6a4d54bef2af4d497ad71aec47361e7696203f623831fd415cef1647acc9893</cites><orcidid>0000-0002-9047-3439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12021-021-09538-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12021-021-09538-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34378155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sirpal, Parikshat</creatorcontrib><creatorcontrib>Damseh, Rafat</creatorcontrib><creatorcontrib>Peng, Ke</creatorcontrib><creatorcontrib>Nguyen, Dang Khoa</creatorcontrib><creatorcontrib>Lesage, Frédéric</creatorcontrib><title>Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional connectivity validates similar patterns between experimental fNIRS and our model’s fNIRS reconstructions. This is the first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific hypotheses about how EEG frequency bands decode fNIRS signals.</description><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - diagnostic imaging</subject><subject>Brain Mapping - methods</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Deep learning</subject><subject>EEG</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy</subject><subject>Epilepsy - diagnostic imaging</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Infrared spectroscopy</subject><subject>Long short-term memory</subject><subject>Neural networks</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original</subject><subject>Original Article</subject><subject>Oscillations</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Spectrum analysis</subject><issn>1539-2791</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUlPwzAQhS0EglL4AxxQJC5cAt4SxxckVNpSqSxq4Wy5jl2CkrjYCRL_HnehLAcOo7E037zx0wPgBMELBCG79AhDjOJV8YRkMdkBHZQkPIYw47vLN-ExZhwdgEPvXyHEKYNwHxwQSlgWyA64uWvLpqhsLsvoum2srpXNtYsenc4L1fjI3I8m02iifVPU82jayEZHA2erqN8fRtNiXsvSH4E9E5o-3vQueB70n3q38fhhOOpdj2NFGW1ialJJ84TOtMHS0JxyJnOGpA5jkiLNUp5iSEyKSUaQySlKlDYopUwqxTNOuuBqrbtoZ5XOla4bJ0uxcEUl3YewshC_J3XxIub2XfCEMpalQeB8I-DsWxs8iarwSpelrLVtvcDhNEwyiLKAnv1BX23rlm4FZhiz4AijQOE1pZz13mmz_QyCYhmSWIckVrUMSZCwdPrTxnblK5UAkDXgw6iea_d9-x_ZTxBVnAM</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Sirpal, Parikshat</creator><creator>Damseh, Rafat</creator><creator>Peng, Ke</creator><creator>Nguyen, Dang Khoa</creator><creator>Lesage, Frédéric</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9047-3439</orcidid></search><sort><creationdate>20220701</creationdate><title>Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals</title><author>Sirpal, Parikshat ; Damseh, Rafat ; Peng, Ke ; Nguyen, Dang Khoa ; Lesage, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4f6a4d54bef2af4d497ad71aec47361e7696203f623831fd415cef1647acc9893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - diagnostic imaging</topic><topic>Brain Mapping - methods</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Deep learning</topic><topic>EEG</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy</topic><topic>Epilepsy - diagnostic imaging</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Infrared spectroscopy</topic><topic>Long short-term memory</topic><topic>Neural networks</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original</topic><topic>Original Article</topic><topic>Oscillations</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sirpal, Parikshat</creatorcontrib><creatorcontrib>Damseh, Rafat</creatorcontrib><creatorcontrib>Peng, Ke</creatorcontrib><creatorcontrib>Nguyen, Dang Khoa</creatorcontrib><creatorcontrib>Lesage, Frédéric</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sirpal, Parikshat</au><au>Damseh, Rafat</au><au>Peng, Ke</au><au>Nguyen, Dang Khoa</au><au>Lesage, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>20</volume><issue>3</issue><spage>537</spage><epage>558</epage><pages>537-558</pages><issn>1539-2791</issn><eissn>1559-0089</eissn><abstract>In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional connectivity validates similar patterns between experimental fNIRS and our model’s fNIRS reconstructions. This is the first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific hypotheses about how EEG frequency bands decode fNIRS signals.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34378155</pmid><doi>10.1007/s12021-021-09538-3</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9047-3439</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-2791 |
ispartof | Neuroinformatics (Totowa, N.J.), 2022-07, Vol.20 (3), p.537-558 |
issn | 1539-2791 1559-0089 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9547786 |
source | MEDLINE; SpringerLink Journals |
subjects | Bioinformatics Biomedical and Life Sciences Biomedicine Brain - diagnostic imaging Brain Mapping - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Deep learning EEG Electroencephalography - methods Epilepsy Epilepsy - diagnostic imaging Hemodynamics Humans Infrared spectroscopy Long short-term memory Neural networks Neurology Neurosciences Original Original Article Oscillations Spectroscopy, Near-Infrared - methods Spectrum analysis |
title | Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Autoencoder%20Predicts%20fNIRS%20Resting%20State%20From%20EEG%20Signals&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Sirpal,%20Parikshat&rft.date=2022-07-01&rft.volume=20&rft.issue=3&rft.spage=537&rft.epage=558&rft.pages=537-558&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-021-09538-3&rft_dat=%3Cproquest_pubme%3E2722747421%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722747421&rft_id=info:pmid/34378155&rfr_iscdi=true |