Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals

In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimoda...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroinformatics (Totowa, N.J.) N.J.), 2022-07, Vol.20 (3), p.537-558
Hauptverfasser: Sirpal, Parikshat, Damseh, Rafat, Peng, Ke, Nguyen, Dang Khoa, Lesage, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558
container_issue 3
container_start_page 537
container_title Neuroinformatics (Totowa, N.J.)
container_volume 20
creator Sirpal, Parikshat
Damseh, Rafat
Peng, Ke
Nguyen, Dang Khoa
Lesage, Frédéric
description In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional connectivity validates similar patterns between experimental fNIRS and our model’s fNIRS reconstructions. This is the first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific hypotheses about how EEG frequency bands decode fNIRS signals.
doi_str_mv 10.1007/s12021-021-09538-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9547786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722747421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4f6a4d54bef2af4d497ad71aec47361e7696203f623831fd415cef1647acc9893</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0EglL4AxxQJC5cAt4SxxckVNpSqSxq4Wy5jl2CkrjYCRL_HnehLAcOo7E037zx0wPgBMELBCG79AhDjOJV8YRkMdkBHZQkPIYw47vLN-ExZhwdgEPvXyHEKYNwHxwQSlgWyA64uWvLpqhsLsvoum2srpXNtYsenc4L1fjI3I8m02iifVPU82jayEZHA2erqN8fRtNiXsvSH4E9E5o-3vQueB70n3q38fhhOOpdj2NFGW1ialJJ84TOtMHS0JxyJnOGpA5jkiLNUp5iSEyKSUaQySlKlDYopUwqxTNOuuBqrbtoZ5XOla4bJ0uxcEUl3YewshC_J3XxIub2XfCEMpalQeB8I-DsWxs8iarwSpelrLVtvcDhNEwyiLKAnv1BX23rlm4FZhiz4AijQOE1pZz13mmz_QyCYhmSWIckVrUMSZCwdPrTxnblK5UAkDXgw6iea_d9-x_ZTxBVnAM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722747421</pqid></control><display><type>article</type><title>Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Sirpal, Parikshat ; Damseh, Rafat ; Peng, Ke ; Nguyen, Dang Khoa ; Lesage, Frédéric</creator><creatorcontrib>Sirpal, Parikshat ; Damseh, Rafat ; Peng, Ke ; Nguyen, Dang Khoa ; Lesage, Frédéric</creatorcontrib><description>In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional connectivity validates similar patterns between experimental fNIRS and our model’s fNIRS reconstructions. This is the first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific hypotheses about how EEG frequency bands decode fNIRS signals.</description><identifier>ISSN: 1539-2791</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-021-09538-3</identifier><identifier>PMID: 34378155</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - diagnostic imaging ; Brain Mapping - methods ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Deep learning ; EEG ; Electroencephalography - methods ; Epilepsy ; Epilepsy - diagnostic imaging ; Hemodynamics ; Humans ; Infrared spectroscopy ; Long short-term memory ; Neural networks ; Neurology ; Neurosciences ; Original ; Original Article ; Oscillations ; Spectroscopy, Near-Infrared - methods ; Spectrum analysis</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2022-07, Vol.20 (3), p.537-558</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-4f6a4d54bef2af4d497ad71aec47361e7696203f623831fd415cef1647acc9893</citedby><cites>FETCH-LOGICAL-c474t-4f6a4d54bef2af4d497ad71aec47361e7696203f623831fd415cef1647acc9893</cites><orcidid>0000-0002-9047-3439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12021-021-09538-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12021-021-09538-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34378155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sirpal, Parikshat</creatorcontrib><creatorcontrib>Damseh, Rafat</creatorcontrib><creatorcontrib>Peng, Ke</creatorcontrib><creatorcontrib>Nguyen, Dang Khoa</creatorcontrib><creatorcontrib>Lesage, Frédéric</creatorcontrib><title>Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional connectivity validates similar patterns between experimental fNIRS and our model’s fNIRS reconstructions. This is the first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific hypotheses about how EEG frequency bands decode fNIRS signals.</description><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - diagnostic imaging</subject><subject>Brain Mapping - methods</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Deep learning</subject><subject>EEG</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy</subject><subject>Epilepsy - diagnostic imaging</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Infrared spectroscopy</subject><subject>Long short-term memory</subject><subject>Neural networks</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original</subject><subject>Original Article</subject><subject>Oscillations</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Spectrum analysis</subject><issn>1539-2791</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUlPwzAQhS0EglL4AxxQJC5cAt4SxxckVNpSqSxq4Wy5jl2CkrjYCRL_HnehLAcOo7E037zx0wPgBMELBCG79AhDjOJV8YRkMdkBHZQkPIYw47vLN-ExZhwdgEPvXyHEKYNwHxwQSlgWyA64uWvLpqhsLsvoum2srpXNtYsenc4L1fjI3I8m02iifVPU82jayEZHA2erqN8fRtNiXsvSH4E9E5o-3vQueB70n3q38fhhOOpdj2NFGW1ialJJ84TOtMHS0JxyJnOGpA5jkiLNUp5iSEyKSUaQySlKlDYopUwqxTNOuuBqrbtoZ5XOla4bJ0uxcEUl3YewshC_J3XxIub2XfCEMpalQeB8I-DsWxs8iarwSpelrLVtvcDhNEwyiLKAnv1BX23rlm4FZhiz4AijQOE1pZz13mmz_QyCYhmSWIckVrUMSZCwdPrTxnblK5UAkDXgw6iea_d9-x_ZTxBVnAM</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Sirpal, Parikshat</creator><creator>Damseh, Rafat</creator><creator>Peng, Ke</creator><creator>Nguyen, Dang Khoa</creator><creator>Lesage, Frédéric</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9047-3439</orcidid></search><sort><creationdate>20220701</creationdate><title>Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals</title><author>Sirpal, Parikshat ; Damseh, Rafat ; Peng, Ke ; Nguyen, Dang Khoa ; Lesage, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4f6a4d54bef2af4d497ad71aec47361e7696203f623831fd415cef1647acc9893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - diagnostic imaging</topic><topic>Brain Mapping - methods</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Deep learning</topic><topic>EEG</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy</topic><topic>Epilepsy - diagnostic imaging</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Infrared spectroscopy</topic><topic>Long short-term memory</topic><topic>Neural networks</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original</topic><topic>Original Article</topic><topic>Oscillations</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sirpal, Parikshat</creatorcontrib><creatorcontrib>Damseh, Rafat</creatorcontrib><creatorcontrib>Peng, Ke</creatorcontrib><creatorcontrib>Nguyen, Dang Khoa</creatorcontrib><creatorcontrib>Lesage, Frédéric</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sirpal, Parikshat</au><au>Damseh, Rafat</au><au>Peng, Ke</au><au>Nguyen, Dang Khoa</au><au>Lesage, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>20</volume><issue>3</issue><spage>537</spage><epage>558</epage><pages>537-558</pages><issn>1539-2791</issn><eissn>1559-0089</eissn><abstract>In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional connectivity validates similar patterns between experimental fNIRS and our model’s fNIRS reconstructions. This is the first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific hypotheses about how EEG frequency bands decode fNIRS signals.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34378155</pmid><doi>10.1007/s12021-021-09538-3</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9047-3439</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-2791
ispartof Neuroinformatics (Totowa, N.J.), 2022-07, Vol.20 (3), p.537-558
issn 1539-2791
1559-0089
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9547786
source MEDLINE; SpringerLink Journals
subjects Bioinformatics
Biomedical and Life Sciences
Biomedicine
Brain - diagnostic imaging
Brain Mapping - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Deep learning
EEG
Electroencephalography - methods
Epilepsy
Epilepsy - diagnostic imaging
Hemodynamics
Humans
Infrared spectroscopy
Long short-term memory
Neural networks
Neurology
Neurosciences
Original
Original Article
Oscillations
Spectroscopy, Near-Infrared - methods
Spectrum analysis
title Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Autoencoder%20Predicts%20fNIRS%20Resting%20State%20From%20EEG%20Signals&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Sirpal,%20Parikshat&rft.date=2022-07-01&rft.volume=20&rft.issue=3&rft.spage=537&rft.epage=558&rft.pages=537-558&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-021-09538-3&rft_dat=%3Cproquest_pubme%3E2722747421%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722747421&rft_id=info:pmid/34378155&rfr_iscdi=true