Advances in Cuffless Continuous Blood Pressure Monitoring Technology Based on PPG Signals

Objective. To review the progress of research on photoplethysmography- (PPG-) based cuffless continuous blood pressure monitoring technologies and prospect the challenges that need to be addressed in the future. Methods. Using Web of Science and PubMed as search engines, the literature on cuffless c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2022, Vol.2022 (1), p.8094351-8094351
Hauptverfasser: Qin, Caijie, Wang, Xiaohua, Xu, Guangjun, Ma, Xibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8094351
container_issue 1
container_start_page 8094351
container_title BioMed research international
container_volume 2022
creator Qin, Caijie
Wang, Xiaohua
Xu, Guangjun
Ma, Xibo
description Objective. To review the progress of research on photoplethysmography- (PPG-) based cuffless continuous blood pressure monitoring technologies and prospect the challenges that need to be addressed in the future. Methods. Using Web of Science and PubMed as search engines, the literature on cuffless continuous blood pressure studies using PPG signals in the recent five years were searched. Results. Based on the retrieved literature, this paper describes the available open datasets, commonly used signal preprocessing methods, and model evaluation criteria. Early researches employed multisite PPG signals to calculate pulse wave velocity or time and predicted blood pressure by a simple linear equation. Later, extensive researches were dedicated to mine the features of PPG signals related to blood pressure and regressed blood pressure by machine learning models. Most recently, many researches have emerged to experiment with complex deep learning models for blood pressure prediction with the raw PPG signal as input. Conclusion. This paper summarized the methods in the retrieved literature, provided insight into the artificial intelligence algorithms employed in the literature, and concluded with a discussion of the challenges and opportunities for the development of cuffless continuous blood pressure monitoring technologies.
doi_str_mv 10.1155/2022/8094351
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9547685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723815431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-8cab0a5beaf66d6ab2e857d7ee1f3a5268c78e9f0fa644b86f3160fda450f23f3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosoKLo3f0DAi6Cr-W56EXTRVVBcUA-eQtpOdiPdRJN2xX9vyy6CHpzLDDMPLzPzZtkhwWeECHFOMaXnChecCbKV7VFG-FgSTrZ_asZ2s1FKb7gPRSQu5F72elmvjK8gIefRpLO2gZTQJPjW-S50CV01IdRoFvt2FwE9BO_aEJ2fo2eoFj40Yf6FrkyCGgWPZrMpenJzb5p0kO3YPsFok_ezl5vr58nt-P5xeje5vB9XnIp2rCpTYiNKMFbKWpqSghJ5nQMQy4ygUlW5gsJiayTnpZKW9avb2nCBLWWW7WcXa933rlxCXYFvo2n0e3RLE790ME7_nni30POw0oXguVSiFzjeCMTw0UFq9dKlCprGeOg_oGlOmSKCM9KjR3_Qt9DF4dqBokVOcjwInq6pKoaUItifZQjWg1d68EpvvOrxkzW-cL42n-5_-htBKJRo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722971705</pqid></control><display><type>article</type><title>Advances in Cuffless Continuous Blood Pressure Monitoring Technology Based on PPG Signals</title><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Qin, Caijie ; Wang, Xiaohua ; Xu, Guangjun ; Ma, Xibo</creator><contributor>Tsai, Fu-Ming ; Fu-Ming Tsai</contributor><creatorcontrib>Qin, Caijie ; Wang, Xiaohua ; Xu, Guangjun ; Ma, Xibo ; Tsai, Fu-Ming ; Fu-Ming Tsai</creatorcontrib><description>Objective. To review the progress of research on photoplethysmography- (PPG-) based cuffless continuous blood pressure monitoring technologies and prospect the challenges that need to be addressed in the future. Methods. Using Web of Science and PubMed as search engines, the literature on cuffless continuous blood pressure studies using PPG signals in the recent five years were searched. Results. Based on the retrieved literature, this paper describes the available open datasets, commonly used signal preprocessing methods, and model evaluation criteria. Early researches employed multisite PPG signals to calculate pulse wave velocity or time and predicted blood pressure by a simple linear equation. Later, extensive researches were dedicated to mine the features of PPG signals related to blood pressure and regressed blood pressure by machine learning models. Most recently, many researches have emerged to experiment with complex deep learning models for blood pressure prediction with the raw PPG signal as input. Conclusion. This paper summarized the methods in the retrieved literature, provided insight into the artificial intelligence algorithms employed in the literature, and concluded with a discussion of the challenges and opportunities for the development of cuffless continuous blood pressure monitoring technologies.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2022/8094351</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Artificial intelligence ; Blood pressure ; Blood vessels ; Coronary vessels ; Datasets ; Deep learning ; Hypertension ; Intensive care ; Linear equations ; Machine learning ; Methods ; Monitoring ; Physiology ; Review ; Search engines ; Sensors ; Skin ; Wave velocity</subject><ispartof>BioMed research international, 2022, Vol.2022 (1), p.8094351-8094351</ispartof><rights>Copyright © 2022 Caijie Qin et al.</rights><rights>Copyright © 2022 Caijie Qin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Caijie Qin et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-8cab0a5beaf66d6ab2e857d7ee1f3a5268c78e9f0fa644b86f3160fda450f23f3</citedby><cites>FETCH-LOGICAL-c425t-8cab0a5beaf66d6ab2e857d7ee1f3a5268c78e9f0fa644b86f3160fda450f23f3</cites><orcidid>0000-0002-0328-8287 ; 0000-0001-9689-0017 ; 0000-0003-4736-7603 ; 0000-0003-2757-6483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547685/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547685/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4023,27922,27923,27924,53790,53792</link.rule.ids></links><search><contributor>Tsai, Fu-Ming</contributor><contributor>Fu-Ming Tsai</contributor><creatorcontrib>Qin, Caijie</creatorcontrib><creatorcontrib>Wang, Xiaohua</creatorcontrib><creatorcontrib>Xu, Guangjun</creatorcontrib><creatorcontrib>Ma, Xibo</creatorcontrib><title>Advances in Cuffless Continuous Blood Pressure Monitoring Technology Based on PPG Signals</title><title>BioMed research international</title><description>Objective. To review the progress of research on photoplethysmography- (PPG-) based cuffless continuous blood pressure monitoring technologies and prospect the challenges that need to be addressed in the future. Methods. Using Web of Science and PubMed as search engines, the literature on cuffless continuous blood pressure studies using PPG signals in the recent five years were searched. Results. Based on the retrieved literature, this paper describes the available open datasets, commonly used signal preprocessing methods, and model evaluation criteria. Early researches employed multisite PPG signals to calculate pulse wave velocity or time and predicted blood pressure by a simple linear equation. Later, extensive researches were dedicated to mine the features of PPG signals related to blood pressure and regressed blood pressure by machine learning models. Most recently, many researches have emerged to experiment with complex deep learning models for blood pressure prediction with the raw PPG signal as input. Conclusion. This paper summarized the methods in the retrieved literature, provided insight into the artificial intelligence algorithms employed in the literature, and concluded with a discussion of the challenges and opportunities for the development of cuffless continuous blood pressure monitoring technologies.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Blood pressure</subject><subject>Blood vessels</subject><subject>Coronary vessels</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Hypertension</subject><subject>Intensive care</subject><subject>Linear equations</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Monitoring</subject><subject>Physiology</subject><subject>Review</subject><subject>Search engines</subject><subject>Sensors</subject><subject>Skin</subject><subject>Wave velocity</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LxDAQhosoKLo3f0DAi6Cr-W56EXTRVVBcUA-eQtpOdiPdRJN2xX9vyy6CHpzLDDMPLzPzZtkhwWeECHFOMaXnChecCbKV7VFG-FgSTrZ_asZ2s1FKb7gPRSQu5F72elmvjK8gIefRpLO2gZTQJPjW-S50CV01IdRoFvt2FwE9BO_aEJ2fo2eoFj40Yf6FrkyCGgWPZrMpenJzb5p0kO3YPsFok_ezl5vr58nt-P5xeje5vB9XnIp2rCpTYiNKMFbKWpqSghJ5nQMQy4ygUlW5gsJiayTnpZKW9avb2nCBLWWW7WcXa933rlxCXYFvo2n0e3RLE790ME7_nni30POw0oXguVSiFzjeCMTw0UFq9dKlCprGeOg_oGlOmSKCM9KjR3_Qt9DF4dqBokVOcjwInq6pKoaUItifZQjWg1d68EpvvOrxkzW-cL42n-5_-htBKJRo</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Qin, Caijie</creator><creator>Wang, Xiaohua</creator><creator>Xu, Guangjun</creator><creator>Ma, Xibo</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0328-8287</orcidid><orcidid>https://orcid.org/0000-0001-9689-0017</orcidid><orcidid>https://orcid.org/0000-0003-4736-7603</orcidid><orcidid>https://orcid.org/0000-0003-2757-6483</orcidid></search><sort><creationdate>2022</creationdate><title>Advances in Cuffless Continuous Blood Pressure Monitoring Technology Based on PPG Signals</title><author>Qin, Caijie ; Wang, Xiaohua ; Xu, Guangjun ; Ma, Xibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-8cab0a5beaf66d6ab2e857d7ee1f3a5268c78e9f0fa644b86f3160fda450f23f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Blood pressure</topic><topic>Blood vessels</topic><topic>Coronary vessels</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Hypertension</topic><topic>Intensive care</topic><topic>Linear equations</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Monitoring</topic><topic>Physiology</topic><topic>Review</topic><topic>Search engines</topic><topic>Sensors</topic><topic>Skin</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Caijie</creatorcontrib><creatorcontrib>Wang, Xiaohua</creatorcontrib><creatorcontrib>Xu, Guangjun</creatorcontrib><creatorcontrib>Ma, Xibo</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Caijie</au><au>Wang, Xiaohua</au><au>Xu, Guangjun</au><au>Ma, Xibo</au><au>Tsai, Fu-Ming</au><au>Fu-Ming Tsai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in Cuffless Continuous Blood Pressure Monitoring Technology Based on PPG Signals</atitle><jtitle>BioMed research international</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><spage>8094351</spage><epage>8094351</epage><pages>8094351-8094351</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Objective. To review the progress of research on photoplethysmography- (PPG-) based cuffless continuous blood pressure monitoring technologies and prospect the challenges that need to be addressed in the future. Methods. Using Web of Science and PubMed as search engines, the literature on cuffless continuous blood pressure studies using PPG signals in the recent five years were searched. Results. Based on the retrieved literature, this paper describes the available open datasets, commonly used signal preprocessing methods, and model evaluation criteria. Early researches employed multisite PPG signals to calculate pulse wave velocity or time and predicted blood pressure by a simple linear equation. Later, extensive researches were dedicated to mine the features of PPG signals related to blood pressure and regressed blood pressure by machine learning models. Most recently, many researches have emerged to experiment with complex deep learning models for blood pressure prediction with the raw PPG signal as input. Conclusion. This paper summarized the methods in the retrieved literature, provided insight into the artificial intelligence algorithms employed in the literature, and concluded with a discussion of the challenges and opportunities for the development of cuffless continuous blood pressure monitoring technologies.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/8094351</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0328-8287</orcidid><orcidid>https://orcid.org/0000-0001-9689-0017</orcidid><orcidid>https://orcid.org/0000-0003-4736-7603</orcidid><orcidid>https://orcid.org/0000-0003-2757-6483</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2022, Vol.2022 (1), p.8094351-8094351
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9547685
source PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Blood pressure
Blood vessels
Coronary vessels
Datasets
Deep learning
Hypertension
Intensive care
Linear equations
Machine learning
Methods
Monitoring
Physiology
Review
Search engines
Sensors
Skin
Wave velocity
title Advances in Cuffless Continuous Blood Pressure Monitoring Technology Based on PPG Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20Cuffless%20Continuous%20Blood%20Pressure%20Monitoring%20Technology%20Based%20on%20PPG%20Signals&rft.jtitle=BioMed%20research%20international&rft.au=Qin,%20Caijie&rft.date=2022&rft.volume=2022&rft.issue=1&rft.spage=8094351&rft.epage=8094351&rft.pages=8094351-8094351&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2022/8094351&rft_dat=%3Cproquest_pubme%3E2723815431%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722971705&rft_id=info:pmid/&rfr_iscdi=true