SARS‐CoV‐2‐encoded inhibitors of human LINE‐1 retrotransposition

The ongoing pandemic of severe acute respiratory coronavirus 2 (SARS‐CoV‐2) is causing a devastating impact on public health worldwide. However, details concerning the profound impact of SARS‐CoV‐2 on host cells remain elusive. Here, we investigated the effects of SARS‐CoV‐2‐encoded viral proteins o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical virology 2023-01, Vol.95 (1), p.e28135-n/a
Hauptverfasser: Li, Yan, Yang, Jiaxin, Shen, Siyu, Wang, Wei, Liu, Nian, Guo, Haoran, Wei, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e28135
container_title Journal of medical virology
container_volume 95
creator Li, Yan
Yang, Jiaxin
Shen, Siyu
Wang, Wei
Liu, Nian
Guo, Haoran
Wei, Wei
description The ongoing pandemic of severe acute respiratory coronavirus 2 (SARS‐CoV‐2) is causing a devastating impact on public health worldwide. However, details concerning the profound impact of SARS‐CoV‐2 on host cells remain elusive. Here, we investigated the effects of SARS‐CoV‐2‐encoded viral proteins on the intracellular activity of long interspersed element 1 (L1) retrotransposons using well‐established reporter systems. Several nonstructural or accessory proteins (Nsps) of SARS‐CoV‐2 (i.e., Nsp1, Nsp3, Nsp5, and Nsp14) significantly suppress human L1 mobility, and these viral L1 inhibitors generate a complex network that modulates L1 transposition. Specifically, Nsp1 and Nsp14 inhibit the intracellular accumulation of L1 open reading frame proteins (ORF1p), whereas Nsp3, Nsp5, and Nsp14 repress the reverse transcriptase activity of L1 ORF2p. Given recent findings concerning the roles of L1 in antiviral immune activation and host genome instability, the anti‐L1 activities mediated by SARS‐CoV‐2‐encoded inhibitors suggest that SARS‐CoV‐2 employs different strategies to optimize the host genetic environment.
doi_str_mv 10.1002/jmv.28135
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9538743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761191149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4435-c24d0283ab8b7db5fc790123ed555e995342107cbe6dd6f14ddce94854d27ade3</originalsourceid><addsrcrecordid>eNp1kctO3DAUhq0KVAbaRV8ARWLTLgI-viXeVEIjykXTIpWWrZXEDuNRYg92QsWOR-AZeRIMAwgqsTg-i_Pp02_9CH0BvAsYk71Ff7VLSqD8A5oAliKXuIA1NMHARC4E8A20GeMCY1xKQj6iDSpwySknE3R0tv_77O7mdurP00vSGNd4bXRm3dzWdvAhZr7N5mNfuWx2_OsgIZAFMwQ_hMrFpY92sN59Qutt1UXz-Wlvob8_Dv5Mj_LZ6eHxdH-WN4xRnjeEaUxKWtVlXeiat00hMRBqNOfcSMkpI4CLpjZCa9EC07oxkpWcaVJU2tAt9H3lXY51b9LRpRidWgbbV-Fa-cqqtxdn5-rCX6mkLgtGk-DrkyD4y9HEQfU2NqbrKmf8GBUpgJRMikd05z904cfg0vcSJQAkAJOJ-raimuBjDKZ9CQNYPfSjUj_qsZ_Ebr9O_0I-F5KAvRXwz3bm-n2TOvl5vlLeA-9mnXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761191149</pqid></control><display><type>article</type><title>SARS‐CoV‐2‐encoded inhibitors of human LINE‐1 retrotransposition</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Li, Yan ; Yang, Jiaxin ; Shen, Siyu ; Wang, Wei ; Liu, Nian ; Guo, Haoran ; Wei, Wei</creator><creatorcontrib>Li, Yan ; Yang, Jiaxin ; Shen, Siyu ; Wang, Wei ; Liu, Nian ; Guo, Haoran ; Wei, Wei</creatorcontrib><description>The ongoing pandemic of severe acute respiratory coronavirus 2 (SARS‐CoV‐2) is causing a devastating impact on public health worldwide. However, details concerning the profound impact of SARS‐CoV‐2 on host cells remain elusive. Here, we investigated the effects of SARS‐CoV‐2‐encoded viral proteins on the intracellular activity of long interspersed element 1 (L1) retrotransposons using well‐established reporter systems. Several nonstructural or accessory proteins (Nsps) of SARS‐CoV‐2 (i.e., Nsp1, Nsp3, Nsp5, and Nsp14) significantly suppress human L1 mobility, and these viral L1 inhibitors generate a complex network that modulates L1 transposition. Specifically, Nsp1 and Nsp14 inhibit the intracellular accumulation of L1 open reading frame proteins (ORF1p), whereas Nsp3, Nsp5, and Nsp14 repress the reverse transcriptase activity of L1 ORF2p. Given recent findings concerning the roles of L1 in antiviral immune activation and host genome instability, the anti‐L1 activities mediated by SARS‐CoV‐2‐encoded inhibitors suggest that SARS‐CoV‐2 employs different strategies to optimize the host genetic environment.</description><identifier>ISSN: 0146-6615</identifier><identifier>EISSN: 1096-9071</identifier><identifier>DOI: 10.1002/jmv.28135</identifier><identifier>PMID: 36085352</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>coronavirus ; Coronaviruses ; COVID-19 - genetics ; Genomes ; Genomic instability ; Humans ; Immune response ; Inhibitors ; Intracellular ; LINE‐1 ; Long Interspersed Nucleotide Elements ; Pandemics ; Proteins ; Public health ; Retrotransposition ; retrotransposon ; RNA-directed DNA polymerase ; SARS-CoV-2 - genetics ; SARS-CoV-2 - metabolism ; SARS‐CoV‐2 ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Transposition ; Viral diseases ; Viral Nonstructural Proteins - genetics ; Viral Nonstructural Proteins - metabolism ; Viral Proteins - genetics ; Virology</subject><ispartof>Journal of medical virology, 2023-01, Vol.95 (1), p.e28135-n/a</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4435-c24d0283ab8b7db5fc790123ed555e995342107cbe6dd6f14ddce94854d27ade3</citedby><cites>FETCH-LOGICAL-c4435-c24d0283ab8b7db5fc790123ed555e995342107cbe6dd6f14ddce94854d27ade3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmv.28135$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmv.28135$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36085352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Yang, Jiaxin</creatorcontrib><creatorcontrib>Shen, Siyu</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Liu, Nian</creatorcontrib><creatorcontrib>Guo, Haoran</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><title>SARS‐CoV‐2‐encoded inhibitors of human LINE‐1 retrotransposition</title><title>Journal of medical virology</title><addtitle>J Med Virol</addtitle><description>The ongoing pandemic of severe acute respiratory coronavirus 2 (SARS‐CoV‐2) is causing a devastating impact on public health worldwide. However, details concerning the profound impact of SARS‐CoV‐2 on host cells remain elusive. Here, we investigated the effects of SARS‐CoV‐2‐encoded viral proteins on the intracellular activity of long interspersed element 1 (L1) retrotransposons using well‐established reporter systems. Several nonstructural or accessory proteins (Nsps) of SARS‐CoV‐2 (i.e., Nsp1, Nsp3, Nsp5, and Nsp14) significantly suppress human L1 mobility, and these viral L1 inhibitors generate a complex network that modulates L1 transposition. Specifically, Nsp1 and Nsp14 inhibit the intracellular accumulation of L1 open reading frame proteins (ORF1p), whereas Nsp3, Nsp5, and Nsp14 repress the reverse transcriptase activity of L1 ORF2p. Given recent findings concerning the roles of L1 in antiviral immune activation and host genome instability, the anti‐L1 activities mediated by SARS‐CoV‐2‐encoded inhibitors suggest that SARS‐CoV‐2 employs different strategies to optimize the host genetic environment.</description><subject>coronavirus</subject><subject>Coronaviruses</subject><subject>COVID-19 - genetics</subject><subject>Genomes</subject><subject>Genomic instability</subject><subject>Humans</subject><subject>Immune response</subject><subject>Inhibitors</subject><subject>Intracellular</subject><subject>LINE‐1</subject><subject>Long Interspersed Nucleotide Elements</subject><subject>Pandemics</subject><subject>Proteins</subject><subject>Public health</subject><subject>Retrotransposition</subject><subject>retrotransposon</subject><subject>RNA-directed DNA polymerase</subject><subject>SARS-CoV-2 - genetics</subject><subject>SARS-CoV-2 - metabolism</subject><subject>SARS‐CoV‐2</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Transposition</subject><subject>Viral diseases</subject><subject>Viral Nonstructural Proteins - genetics</subject><subject>Viral Nonstructural Proteins - metabolism</subject><subject>Viral Proteins - genetics</subject><subject>Virology</subject><issn>0146-6615</issn><issn>1096-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctO3DAUhq0KVAbaRV8ARWLTLgI-viXeVEIjykXTIpWWrZXEDuNRYg92QsWOR-AZeRIMAwgqsTg-i_Pp02_9CH0BvAsYk71Ff7VLSqD8A5oAliKXuIA1NMHARC4E8A20GeMCY1xKQj6iDSpwySknE3R0tv_77O7mdurP00vSGNd4bXRm3dzWdvAhZr7N5mNfuWx2_OsgIZAFMwQ_hMrFpY92sN59Qutt1UXz-Wlvob8_Dv5Mj_LZ6eHxdH-WN4xRnjeEaUxKWtVlXeiat00hMRBqNOfcSMkpI4CLpjZCa9EC07oxkpWcaVJU2tAt9H3lXY51b9LRpRidWgbbV-Fa-cqqtxdn5-rCX6mkLgtGk-DrkyD4y9HEQfU2NqbrKmf8GBUpgJRMikd05z904cfg0vcSJQAkAJOJ-raimuBjDKZ9CQNYPfSjUj_qsZ_Ebr9O_0I-F5KAvRXwz3bm-n2TOvl5vlLeA-9mnXg</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Li, Yan</creator><creator>Yang, Jiaxin</creator><creator>Shen, Siyu</creator><creator>Wang, Wei</creator><creator>Liu, Nian</creator><creator>Guo, Haoran</creator><creator>Wei, Wei</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202301</creationdate><title>SARS‐CoV‐2‐encoded inhibitors of human LINE‐1 retrotransposition</title><author>Li, Yan ; Yang, Jiaxin ; Shen, Siyu ; Wang, Wei ; Liu, Nian ; Guo, Haoran ; Wei, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4435-c24d0283ab8b7db5fc790123ed555e995342107cbe6dd6f14ddce94854d27ade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>coronavirus</topic><topic>Coronaviruses</topic><topic>COVID-19 - genetics</topic><topic>Genomes</topic><topic>Genomic instability</topic><topic>Humans</topic><topic>Immune response</topic><topic>Inhibitors</topic><topic>Intracellular</topic><topic>LINE‐1</topic><topic>Long Interspersed Nucleotide Elements</topic><topic>Pandemics</topic><topic>Proteins</topic><topic>Public health</topic><topic>Retrotransposition</topic><topic>retrotransposon</topic><topic>RNA-directed DNA polymerase</topic><topic>SARS-CoV-2 - genetics</topic><topic>SARS-CoV-2 - metabolism</topic><topic>SARS‐CoV‐2</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Transposition</topic><topic>Viral diseases</topic><topic>Viral Nonstructural Proteins - genetics</topic><topic>Viral Nonstructural Proteins - metabolism</topic><topic>Viral Proteins - genetics</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Yang, Jiaxin</creatorcontrib><creatorcontrib>Shen, Siyu</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Liu, Nian</creatorcontrib><creatorcontrib>Guo, Haoran</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of medical virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yan</au><au>Yang, Jiaxin</au><au>Shen, Siyu</au><au>Wang, Wei</au><au>Liu, Nian</au><au>Guo, Haoran</au><au>Wei, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SARS‐CoV‐2‐encoded inhibitors of human LINE‐1 retrotransposition</atitle><jtitle>Journal of medical virology</jtitle><addtitle>J Med Virol</addtitle><date>2023-01</date><risdate>2023</risdate><volume>95</volume><issue>1</issue><spage>e28135</spage><epage>n/a</epage><pages>e28135-n/a</pages><issn>0146-6615</issn><eissn>1096-9071</eissn><abstract>The ongoing pandemic of severe acute respiratory coronavirus 2 (SARS‐CoV‐2) is causing a devastating impact on public health worldwide. However, details concerning the profound impact of SARS‐CoV‐2 on host cells remain elusive. Here, we investigated the effects of SARS‐CoV‐2‐encoded viral proteins on the intracellular activity of long interspersed element 1 (L1) retrotransposons using well‐established reporter systems. Several nonstructural or accessory proteins (Nsps) of SARS‐CoV‐2 (i.e., Nsp1, Nsp3, Nsp5, and Nsp14) significantly suppress human L1 mobility, and these viral L1 inhibitors generate a complex network that modulates L1 transposition. Specifically, Nsp1 and Nsp14 inhibit the intracellular accumulation of L1 open reading frame proteins (ORF1p), whereas Nsp3, Nsp5, and Nsp14 repress the reverse transcriptase activity of L1 ORF2p. Given recent findings concerning the roles of L1 in antiviral immune activation and host genome instability, the anti‐L1 activities mediated by SARS‐CoV‐2‐encoded inhibitors suggest that SARS‐CoV‐2 employs different strategies to optimize the host genetic environment.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36085352</pmid><doi>10.1002/jmv.28135</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0146-6615
ispartof Journal of medical virology, 2023-01, Vol.95 (1), p.e28135-n/a
issn 0146-6615
1096-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9538743
source MEDLINE; Access via Wiley Online Library
subjects coronavirus
Coronaviruses
COVID-19 - genetics
Genomes
Genomic instability
Humans
Immune response
Inhibitors
Intracellular
LINE‐1
Long Interspersed Nucleotide Elements
Pandemics
Proteins
Public health
Retrotransposition
retrotransposon
RNA-directed DNA polymerase
SARS-CoV-2 - genetics
SARS-CoV-2 - metabolism
SARS‐CoV‐2
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Transposition
Viral diseases
Viral Nonstructural Proteins - genetics
Viral Nonstructural Proteins - metabolism
Viral Proteins - genetics
Virology
title SARS‐CoV‐2‐encoded inhibitors of human LINE‐1 retrotransposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SARS%E2%80%90CoV%E2%80%902%E2%80%90encoded%20inhibitors%20of%20human%20LINE%E2%80%901%20retrotransposition&rft.jtitle=Journal%20of%20medical%20virology&rft.au=Li,%20Yan&rft.date=2023-01&rft.volume=95&rft.issue=1&rft.spage=e28135&rft.epage=n/a&rft.pages=e28135-n/a&rft.issn=0146-6615&rft.eissn=1096-9071&rft_id=info:doi/10.1002/jmv.28135&rft_dat=%3Cproquest_pubme%3E2761191149%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761191149&rft_id=info:pmid/36085352&rfr_iscdi=true