Discarded COVID‐19 masks‐derived‐doped porous carbon for lithium‐sulfur batteries

Summary Despite the high theoretical capacity and energy density of lithium‐sulfur (Li‐S) batteries, the development of Li‐S batteries has been slow due to the poor electrical conductivity and the shuttle effect of the electrode materials, resulting in low sulfur utilization and fast long‐term cycli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2022-12, Vol.46 (15), p.21928-21936
Hauptverfasser: Rong, Qian, Yuwen, Chao, Liu, Peng, Cheng, Feixiang, Xia, Shubiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21936
container_issue 15
container_start_page 21928
container_title International journal of energy research
container_volume 46
creator Rong, Qian
Yuwen, Chao
Liu, Peng
Cheng, Feixiang
Xia, Shubiao
description Summary Despite the high theoretical capacity and energy density of lithium‐sulfur (Li‐S) batteries, the development of Li‐S batteries has been slow due to the poor electrical conductivity and the shuttle effect of the electrode materials, resulting in low sulfur utilization and fast long‐term cycling capacity decay. The modified carbon materials are often used as sulfur hosts to significantly improve the cycling performance of the materials, but also bring high‐cost issues. Here, the porous carbon materials are synthesized quickly and conveniently by the microwave cross‐linking method using discarded medical masks as carbon sources and concentrated sulfuric acid as solvent. However, poor surface and structural properties limit the application of materials. The porous carbon material is modified with p‐toluene disulfide and urea as the sulfur and nitrogen sources by the microwave cross‐linking method, which not only improves the porosity and specific surface area of the porous carbon material, but also improved the electrical conductivity and interlayer spacing of the material. As synthesized SN‐doped porous carbon is employed as the sulfur host, which exhibits a high discharge capacity (1349.3 mAh g−1) at 0.1°C, the S‐porous C/S, N‐porous C/S, and SN‐porous C/S can maintain 78.1, 43.9, and 59.5% of the initial capacity after 500 cycles. The results indicate that the doping of S and N atoms provides sufficient active sites for the chemisorbed lithium polysulfides (LiPSs) to improve the reaction kinetics of the materials. Schematic diagram of production of functionalized waste COVID‐9 mask‐based porous carbon.
doi_str_mv 10.1002/er.8733
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9538013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725446270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4333-713e06a7ac9b759790fa4dda285e3655742eec1082b4cec85b5d203a7ac29d3f3</originalsourceid><addsrcrecordid>eNp1kdFK3UAQhhdR9NQW30ACXrQgsbs72Wz2RihHWwVBkLbo1bLJTjSaZI-7yRHvfIQ-o0_SPT1WVPBqBub7f2bmJ2SL0T1GKf-Kfq-QACtkwqhSKWPZ-SqZUMghVVSeb5APIVxTGmdMrpMNyHkmcgUTcnHQhMp4izaZnv4-Pnh8-MNU0plwE2Jr0TdztIvOzSIyc96NIYmC0vVJ7XzSNsNVM3aRCGNbjz4pzTBEFYaPZK02bcBPT3WT_Pp--HN6lJ6c_jiefjtJqwwAUskAaW6kqVQphZKK1iaz1vBCIORCyIwjVowWvMwqrApRCsspLARcWahhk-wvfWdj2aGtsB-8afXMN53x99qZRr-e9M2VvnRzrQQUlEE0-PJk4N3tiGHQXfwJtq3pMV6rueQiy3IuaUR33qDXbvR9PC9SosihAFVE6vOSqrwLwWP9vAyjehGXRq8XcUVy--Xuz9z_fCKwuwTumhbv3_PRh2f_7P4CMa6iFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758638398</pqid></control><display><type>article</type><title>Discarded COVID‐19 masks‐derived‐doped porous carbon for lithium‐sulfur batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rong, Qian ; Yuwen, Chao ; Liu, Peng ; Cheng, Feixiang ; Xia, Shubiao</creator><creatorcontrib>Rong, Qian ; Yuwen, Chao ; Liu, Peng ; Cheng, Feixiang ; Xia, Shubiao</creatorcontrib><description>Summary Despite the high theoretical capacity and energy density of lithium‐sulfur (Li‐S) batteries, the development of Li‐S batteries has been slow due to the poor electrical conductivity and the shuttle effect of the electrode materials, resulting in low sulfur utilization and fast long‐term cycling capacity decay. The modified carbon materials are often used as sulfur hosts to significantly improve the cycling performance of the materials, but also bring high‐cost issues. Here, the porous carbon materials are synthesized quickly and conveniently by the microwave cross‐linking method using discarded medical masks as carbon sources and concentrated sulfuric acid as solvent. However, poor surface and structural properties limit the application of materials. The porous carbon material is modified with p‐toluene disulfide and urea as the sulfur and nitrogen sources by the microwave cross‐linking method, which not only improves the porosity and specific surface area of the porous carbon material, but also improved the electrical conductivity and interlayer spacing of the material. As synthesized SN‐doped porous carbon is employed as the sulfur host, which exhibits a high discharge capacity (1349.3 mAh g−1) at 0.1°C, the S‐porous C/S, N‐porous C/S, and SN‐porous C/S can maintain 78.1, 43.9, and 59.5% of the initial capacity after 500 cycles. The results indicate that the doping of S and N atoms provides sufficient active sites for the chemisorbed lithium polysulfides (LiPSs) to improve the reaction kinetics of the materials. Schematic diagram of production of functionalized waste COVID‐9 mask‐based porous carbon.</description><identifier>ISSN: 0363-907X</identifier><identifier>ISSN: 1099-114X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.8733</identifier><identifier>PMID: 36245693</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Batteries ; Capacity ; Carbon ; Carbon sources ; COVID-19 ; Cycles ; discharge capacity ; Electrical conductivity ; Electrical resistivity ; Electrode materials ; Interlayers ; Kinetics ; Lithium ; Lithium sulfur batteries ; Li‐S batteries ; Masks ; medical masks ; Nitrogen ; Nitrogen sources ; Porosity ; porous carbon ; Porous materials ; Reaction kinetics ; Short Communication ; Short Communications ; Sulfur ; Sulfuric acid ; Sulphur ; Sulphuric acid ; Synthesis ; Toluene ; Urea</subject><ispartof>International journal of energy research, 2022-12, Vol.46 (15), p.21928-21936</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4333-713e06a7ac9b759790fa4dda285e3655742eec1082b4cec85b5d203a7ac29d3f3</citedby><cites>FETCH-LOGICAL-c4333-713e06a7ac9b759790fa4dda285e3655742eec1082b4cec85b5d203a7ac29d3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.8733$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.8733$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36245693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rong, Qian</creatorcontrib><creatorcontrib>Yuwen, Chao</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Cheng, Feixiang</creatorcontrib><creatorcontrib>Xia, Shubiao</creatorcontrib><title>Discarded COVID‐19 masks‐derived‐doped porous carbon for lithium‐sulfur batteries</title><title>International journal of energy research</title><addtitle>Int J Energy Res</addtitle><description>Summary Despite the high theoretical capacity and energy density of lithium‐sulfur (Li‐S) batteries, the development of Li‐S batteries has been slow due to the poor electrical conductivity and the shuttle effect of the electrode materials, resulting in low sulfur utilization and fast long‐term cycling capacity decay. The modified carbon materials are often used as sulfur hosts to significantly improve the cycling performance of the materials, but also bring high‐cost issues. Here, the porous carbon materials are synthesized quickly and conveniently by the microwave cross‐linking method using discarded medical masks as carbon sources and concentrated sulfuric acid as solvent. However, poor surface and structural properties limit the application of materials. The porous carbon material is modified with p‐toluene disulfide and urea as the sulfur and nitrogen sources by the microwave cross‐linking method, which not only improves the porosity and specific surface area of the porous carbon material, but also improved the electrical conductivity and interlayer spacing of the material. As synthesized SN‐doped porous carbon is employed as the sulfur host, which exhibits a high discharge capacity (1349.3 mAh g−1) at 0.1°C, the S‐porous C/S, N‐porous C/S, and SN‐porous C/S can maintain 78.1, 43.9, and 59.5% of the initial capacity after 500 cycles. The results indicate that the doping of S and N atoms provides sufficient active sites for the chemisorbed lithium polysulfides (LiPSs) to improve the reaction kinetics of the materials. Schematic diagram of production of functionalized waste COVID‐9 mask‐based porous carbon.</description><subject>Batteries</subject><subject>Capacity</subject><subject>Carbon</subject><subject>Carbon sources</subject><subject>COVID-19</subject><subject>Cycles</subject><subject>discharge capacity</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Interlayers</subject><subject>Kinetics</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Li‐S batteries</subject><subject>Masks</subject><subject>medical masks</subject><subject>Nitrogen</subject><subject>Nitrogen sources</subject><subject>Porosity</subject><subject>porous carbon</subject><subject>Porous materials</subject><subject>Reaction kinetics</subject><subject>Short Communication</subject><subject>Short Communications</subject><subject>Sulfur</subject><subject>Sulfuric acid</subject><subject>Sulphur</subject><subject>Sulphuric acid</subject><subject>Synthesis</subject><subject>Toluene</subject><subject>Urea</subject><issn>0363-907X</issn><issn>1099-114X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kdFK3UAQhhdR9NQW30ACXrQgsbs72Wz2RihHWwVBkLbo1bLJTjSaZI-7yRHvfIQ-o0_SPT1WVPBqBub7f2bmJ2SL0T1GKf-Kfq-QACtkwqhSKWPZ-SqZUMghVVSeb5APIVxTGmdMrpMNyHkmcgUTcnHQhMp4izaZnv4-Pnh8-MNU0plwE2Jr0TdztIvOzSIyc96NIYmC0vVJ7XzSNsNVM3aRCGNbjz4pzTBEFYaPZK02bcBPT3WT_Pp--HN6lJ6c_jiefjtJqwwAUskAaW6kqVQphZKK1iaz1vBCIORCyIwjVowWvMwqrApRCsspLARcWahhk-wvfWdj2aGtsB-8afXMN53x99qZRr-e9M2VvnRzrQQUlEE0-PJk4N3tiGHQXfwJtq3pMV6rueQiy3IuaUR33qDXbvR9PC9SosihAFVE6vOSqrwLwWP9vAyjehGXRq8XcUVy--Xuz9z_fCKwuwTumhbv3_PRh2f_7P4CMa6iFA</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Rong, Qian</creator><creator>Yuwen, Chao</creator><creator>Liu, Peng</creator><creator>Cheng, Feixiang</creator><creator>Xia, Shubiao</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202212</creationdate><title>Discarded COVID‐19 masks‐derived‐doped porous carbon for lithium‐sulfur batteries</title><author>Rong, Qian ; Yuwen, Chao ; Liu, Peng ; Cheng, Feixiang ; Xia, Shubiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4333-713e06a7ac9b759790fa4dda285e3655742eec1082b4cec85b5d203a7ac29d3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Capacity</topic><topic>Carbon</topic><topic>Carbon sources</topic><topic>COVID-19</topic><topic>Cycles</topic><topic>discharge capacity</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Interlayers</topic><topic>Kinetics</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Li‐S batteries</topic><topic>Masks</topic><topic>medical masks</topic><topic>Nitrogen</topic><topic>Nitrogen sources</topic><topic>Porosity</topic><topic>porous carbon</topic><topic>Porous materials</topic><topic>Reaction kinetics</topic><topic>Short Communication</topic><topic>Short Communications</topic><topic>Sulfur</topic><topic>Sulfuric acid</topic><topic>Sulphur</topic><topic>Sulphuric acid</topic><topic>Synthesis</topic><topic>Toluene</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rong, Qian</creatorcontrib><creatorcontrib>Yuwen, Chao</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Cheng, Feixiang</creatorcontrib><creatorcontrib>Xia, Shubiao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rong, Qian</au><au>Yuwen, Chao</au><au>Liu, Peng</au><au>Cheng, Feixiang</au><au>Xia, Shubiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discarded COVID‐19 masks‐derived‐doped porous carbon for lithium‐sulfur batteries</atitle><jtitle>International journal of energy research</jtitle><addtitle>Int J Energy Res</addtitle><date>2022-12</date><risdate>2022</risdate><volume>46</volume><issue>15</issue><spage>21928</spage><epage>21936</epage><pages>21928-21936</pages><issn>0363-907X</issn><issn>1099-114X</issn><eissn>1099-114X</eissn><abstract>Summary Despite the high theoretical capacity and energy density of lithium‐sulfur (Li‐S) batteries, the development of Li‐S batteries has been slow due to the poor electrical conductivity and the shuttle effect of the electrode materials, resulting in low sulfur utilization and fast long‐term cycling capacity decay. The modified carbon materials are often used as sulfur hosts to significantly improve the cycling performance of the materials, but also bring high‐cost issues. Here, the porous carbon materials are synthesized quickly and conveniently by the microwave cross‐linking method using discarded medical masks as carbon sources and concentrated sulfuric acid as solvent. However, poor surface and structural properties limit the application of materials. The porous carbon material is modified with p‐toluene disulfide and urea as the sulfur and nitrogen sources by the microwave cross‐linking method, which not only improves the porosity and specific surface area of the porous carbon material, but also improved the electrical conductivity and interlayer spacing of the material. As synthesized SN‐doped porous carbon is employed as the sulfur host, which exhibits a high discharge capacity (1349.3 mAh g−1) at 0.1°C, the S‐porous C/S, N‐porous C/S, and SN‐porous C/S can maintain 78.1, 43.9, and 59.5% of the initial capacity after 500 cycles. The results indicate that the doping of S and N atoms provides sufficient active sites for the chemisorbed lithium polysulfides (LiPSs) to improve the reaction kinetics of the materials. Schematic diagram of production of functionalized waste COVID‐9 mask‐based porous carbon.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36245693</pmid><doi>10.1002/er.8733</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2022-12, Vol.46 (15), p.21928-21936
issn 0363-907X
1099-114X
1099-114X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9538013
source Wiley Online Library Journals Frontfile Complete
subjects Batteries
Capacity
Carbon
Carbon sources
COVID-19
Cycles
discharge capacity
Electrical conductivity
Electrical resistivity
Electrode materials
Interlayers
Kinetics
Lithium
Lithium sulfur batteries
Li‐S batteries
Masks
medical masks
Nitrogen
Nitrogen sources
Porosity
porous carbon
Porous materials
Reaction kinetics
Short Communication
Short Communications
Sulfur
Sulfuric acid
Sulphur
Sulphuric acid
Synthesis
Toluene
Urea
title Discarded COVID‐19 masks‐derived‐doped porous carbon for lithium‐sulfur batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discarded%20COVID%E2%80%9019%20masks%E2%80%90derived%E2%80%90doped%20porous%20carbon%20for%20lithium%E2%80%90sulfur%20batteries&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Rong,%20Qian&rft.date=2022-12&rft.volume=46&rft.issue=15&rft.spage=21928&rft.epage=21936&rft.pages=21928-21936&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.8733&rft_dat=%3Cproquest_pubme%3E2725446270%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758638398&rft_id=info:pmid/36245693&rfr_iscdi=true