The role of artificial intelligence in paediatric cardiovascular magnetic resonance imaging

Artificial intelligence (AI) offers the potential to change many aspects of paediatric cardiac imaging. At present, there are only a few clinically validated examples of AI applications in this field. This review focuses on the use of AI in paediatric cardiovascular MRI, using examples from paediatr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric radiology 2022-10, Vol.52 (11), p.2131-2138
1. Verfasser: Taylor, Andrew M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2138
container_issue 11
container_start_page 2131
container_title Pediatric radiology
container_volume 52
creator Taylor, Andrew M.
description Artificial intelligence (AI) offers the potential to change many aspects of paediatric cardiac imaging. At present, there are only a few clinically validated examples of AI applications in this field. This review focuses on the use of AI in paediatric cardiovascular MRI, using examples from paediatric cardiovascular MRI, adult cardiovascular MRI and other radiologic experience.
doi_str_mv 10.1007/s00247-021-05218-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9537201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721999436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c2f1d6056f6f8ba2fabfa4ea0dd21f08f4ed8fc1bbdd1fdd2cbee49a22f21a763</originalsourceid><addsrcrecordid>eNp9UctuFDEQtBAR2Sz8AAc0EpdchrQfO48LEopIQIqUS3LiYPXY7YmjWXuxZyLx93izITwOnCx3laurXIy95fCBA7RnGUCotgbBa9gI3tX8BVtxJUXN-757yVYgoUBK9cfsJOd7AJAbLl-xY6l62QDvV-zbzR1VKU5URVdhmr3zxuNU-TDTNPmRgqFyqXZI1uOcvKkMJuvjA2azTJiqLY6B5jJPlGPAR36Z-TC-ZkcOp0xvns41u734fHP-pb66vvx6_umqNqpVc22E47aBTeMa1w0oHA4OFSFYK7iDzimynTN8GKzlrgzNQKR6FMIJjm0j1-zjQXe3DFuyhsKccNK7VHykHzqi138jwd_pMT7ofiNbAbwInD4JpPh9oTzrrc-m5MdAcclaNFy0slGFv2bv_6HexyWFEk-LVpR_75XcOxIHlkkx50Tu2QwHve9OH7rTpTv92J3eu3j3Z4znJ7_KKgR5IOQChZHS793_kf0J6oOoJQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721999436</pqid></control><display><type>article</type><title>The role of artificial intelligence in paediatric cardiovascular magnetic resonance imaging</title><source>SpringerLink Journals - AutoHoldings</source><creator>Taylor, Andrew M.</creator><creatorcontrib>Taylor, Andrew M.</creatorcontrib><description>Artificial intelligence (AI) offers the potential to change many aspects of paediatric cardiac imaging. At present, there are only a few clinically validated examples of AI applications in this field. This review focuses on the use of AI in paediatric cardiovascular MRI, using examples from paediatric cardiovascular MRI, adult cardiovascular MRI and other radiologic experience.</description><identifier>ISSN: 0301-0449</identifier><identifier>EISSN: 1432-1998</identifier><identifier>DOI: 10.1007/s00247-021-05218-1</identifier><identifier>PMID: 34936019</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial intelligence ; Artificial Intelligence in Pediatric Radiology ; Automation ; Cardiovascular disease ; Children &amp; youth ; Heart ; Imaging ; Machine learning ; Magnetic resonance imaging ; Medicine ; Medicine &amp; Public Health ; Neural networks ; Neuroradiology ; Nuclear Medicine ; Oncology ; Patients ; Pediatrics ; Radiology ; Scanners ; Ultrasound</subject><ispartof>Pediatric radiology, 2022-10, Vol.52 (11), p.2131-2138</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c2f1d6056f6f8ba2fabfa4ea0dd21f08f4ed8fc1bbdd1fdd2cbee49a22f21a763</citedby><cites>FETCH-LOGICAL-c474t-c2f1d6056f6f8ba2fabfa4ea0dd21f08f4ed8fc1bbdd1fdd2cbee49a22f21a763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00247-021-05218-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00247-021-05218-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34936019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Andrew M.</creatorcontrib><title>The role of artificial intelligence in paediatric cardiovascular magnetic resonance imaging</title><title>Pediatric radiology</title><addtitle>Pediatr Radiol</addtitle><addtitle>Pediatr Radiol</addtitle><description>Artificial intelligence (AI) offers the potential to change many aspects of paediatric cardiac imaging. At present, there are only a few clinically validated examples of AI applications in this field. This review focuses on the use of AI in paediatric cardiovascular MRI, using examples from paediatric cardiovascular MRI, adult cardiovascular MRI and other radiologic experience.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial Intelligence in Pediatric Radiology</subject><subject>Automation</subject><subject>Cardiovascular disease</subject><subject>Children &amp; youth</subject><subject>Heart</subject><subject>Imaging</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neural networks</subject><subject>Neuroradiology</subject><subject>Nuclear Medicine</subject><subject>Oncology</subject><subject>Patients</subject><subject>Pediatrics</subject><subject>Radiology</subject><subject>Scanners</subject><subject>Ultrasound</subject><issn>0301-0449</issn><issn>1432-1998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UctuFDEQtBAR2Sz8AAc0EpdchrQfO48LEopIQIqUS3LiYPXY7YmjWXuxZyLx93izITwOnCx3laurXIy95fCBA7RnGUCotgbBa9gI3tX8BVtxJUXN-757yVYgoUBK9cfsJOd7AJAbLl-xY6l62QDvV-zbzR1VKU5URVdhmr3zxuNU-TDTNPmRgqFyqXZI1uOcvKkMJuvjA2azTJiqLY6B5jJPlGPAR36Z-TC-ZkcOp0xvns41u734fHP-pb66vvx6_umqNqpVc22E47aBTeMa1w0oHA4OFSFYK7iDzimynTN8GKzlrgzNQKR6FMIJjm0j1-zjQXe3DFuyhsKccNK7VHykHzqi138jwd_pMT7ofiNbAbwInD4JpPh9oTzrrc-m5MdAcclaNFy0slGFv2bv_6HexyWFEk-LVpR_75XcOxIHlkkx50Tu2QwHve9OH7rTpTv92J3eu3j3Z4znJ7_KKgR5IOQChZHS793_kf0J6oOoJQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Taylor, Andrew M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20221001</creationdate><title>The role of artificial intelligence in paediatric cardiovascular magnetic resonance imaging</title><author>Taylor, Andrew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c2f1d6056f6f8ba2fabfa4ea0dd21f08f4ed8fc1bbdd1fdd2cbee49a22f21a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial Intelligence in Pediatric Radiology</topic><topic>Automation</topic><topic>Cardiovascular disease</topic><topic>Children &amp; youth</topic><topic>Heart</topic><topic>Imaging</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neural networks</topic><topic>Neuroradiology</topic><topic>Nuclear Medicine</topic><topic>Oncology</topic><topic>Patients</topic><topic>Pediatrics</topic><topic>Radiology</topic><topic>Scanners</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Andrew M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pediatric radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Andrew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of artificial intelligence in paediatric cardiovascular magnetic resonance imaging</atitle><jtitle>Pediatric radiology</jtitle><stitle>Pediatr Radiol</stitle><addtitle>Pediatr Radiol</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>52</volume><issue>11</issue><spage>2131</spage><epage>2138</epage><pages>2131-2138</pages><issn>0301-0449</issn><eissn>1432-1998</eissn><abstract>Artificial intelligence (AI) offers the potential to change many aspects of paediatric cardiac imaging. At present, there are only a few clinically validated examples of AI applications in this field. This review focuses on the use of AI in paediatric cardiovascular MRI, using examples from paediatric cardiovascular MRI, adult cardiovascular MRI and other radiologic experience.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34936019</pmid><doi>10.1007/s00247-021-05218-1</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0301-0449
ispartof Pediatric radiology, 2022-10, Vol.52 (11), p.2131-2138
issn 0301-0449
1432-1998
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9537201
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial intelligence
Artificial Intelligence in Pediatric Radiology
Automation
Cardiovascular disease
Children & youth
Heart
Imaging
Machine learning
Magnetic resonance imaging
Medicine
Medicine & Public Health
Neural networks
Neuroradiology
Nuclear Medicine
Oncology
Patients
Pediatrics
Radiology
Scanners
Ultrasound
title The role of artificial intelligence in paediatric cardiovascular magnetic resonance imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20artificial%20intelligence%20in%20paediatric%20cardiovascular%20magnetic%20resonance%20imaging&rft.jtitle=Pediatric%20radiology&rft.au=Taylor,%20Andrew%20M.&rft.date=2022-10-01&rft.volume=52&rft.issue=11&rft.spage=2131&rft.epage=2138&rft.pages=2131-2138&rft.issn=0301-0449&rft.eissn=1432-1998&rft_id=info:doi/10.1007/s00247-021-05218-1&rft_dat=%3Cproquest_pubme%3E2721999436%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721999436&rft_id=info:pmid/34936019&rfr_iscdi=true