Chemotactic Bacteria Facilitate the Dispersion of Nonmotile Bacteria through Micrometer-Sized Pores in Engineered Porous Media

Recent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe–microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2022-10, Vol.56 (19), p.13975-13984
Hauptverfasser: Balseiro-Romero, María, Prieto-Fernández, Ángeles, Shor, Leslie M., Ghoshal, Subhasis, Baveye, Philippe C., Ortega-Calvo, José Julio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13984
container_issue 19
container_start_page 13975
container_title Environmental science & technology
container_volume 56
creator Balseiro-Romero, María
Prieto-Fernández, Ángeles
Shor, Leslie M.
Ghoshal, Subhasis
Baveye, Philippe C.
Ortega-Calvo, José Julio
description Recent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe–microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porous systems. The aim of this study was to demonstrate the enhancement in the dispersion of nonmotile bacteria (Mycobacterium gilvum VM552, a polycyclic aromatic hydrocarbon-degrader, and Sphingobium sp. D4, a hexachlorocyclohexane-degrader, through micrometer-sized pores near the exclusion-cell-size limit, in the presence of motile Pseudomonas putida G7 cells. For this purpose, we used bioreactors equipped with two chambers that were separated with membrane filters with 3, 5, and 12 μm pore sizes and capillary polydimethylsiloxane (PDMS) microarrays (20 μm × 35 μm × 2.2 mm). The cotransport of nonmotile bacteria occurred exclusively in the presence of a chemoattractant concentration gradient, and therefore, a directed flow of motile cells. This cotransport was more intense in the presence of larger pores (12 μm) and strong chemoeffectors (γ-aminobutyric acid). The mechanism that governed cotransport at the cell scale involved mechanical pushing and hydrodynamic interactions. Chemotaxis-mediated cotransport of bacterial degraders and its implications in pore accessibility opens new avenues for the enhancement of bacterial dispersion in porous media and the biodegradation of heterogeneously contaminated scenarios.
doi_str_mv 10.1021/acs.est.2c03149
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9535858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714655939</sourcerecordid><originalsourceid>FETCH-LOGICAL-a434t-d7942b807c51d903993513d0dc7583814eb9cbc70ebe98d4f7992f98a2b525613</originalsourceid><addsrcrecordid>eNp1kd9rFDEQx4NY7LX67GvAF0H2mh-b2-RF0GurQquCCr6FbHb2NmU3uSbZQn3wbzfHHZUKPg3MfL5fZr6D0EtKlpQwemZsWkLKS2YJp7V6ghZUMFIJKehTtCCE8krx1c9jdJLSDSGEcSKfoWO-ooQLJRbo93qAKWRjs7P4fSkQncGXxrrRZZMB5wHwuUtbiMkFj0OPPwdfFG6Ev3weYpg3A752NoYJSrP65n5Bh7-GCAk7jy_8xnmAuO-FOeFr6Jx5jo56MyZ4cain6Mflxff1x-rqy4dP63dXlal5nauuUTVrJWmsoJ0iXCkuKO9IZxshuaQ1tMq2tiHQgpJd3TdKsV5Jw1rBxIryU_R277ud2wk6Cz5HM-ptdJOJ9zoYpx9PvBv0JtxpJXgJUxaD1weDGG7nErmeXLIwjsZDuUazhtYrIRRXBX31D3oT5ujLeYVijEulGlKosz1VEkspQv-wDCV691tdfqt36sNvi-LNXrEbPFj-j_4DDsindg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722389970</pqid></control><display><type>article</type><title>Chemotactic Bacteria Facilitate the Dispersion of Nonmotile Bacteria through Micrometer-Sized Pores in Engineered Porous Media</title><source>American Chemical Society Publications</source><creator>Balseiro-Romero, María ; Prieto-Fernández, Ángeles ; Shor, Leslie M. ; Ghoshal, Subhasis ; Baveye, Philippe C. ; Ortega-Calvo, José Julio</creator><creatorcontrib>Balseiro-Romero, María ; Prieto-Fernández, Ángeles ; Shor, Leslie M. ; Ghoshal, Subhasis ; Baveye, Philippe C. ; Ortega-Calvo, José Julio</creatorcontrib><description>Recent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe–microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porous systems. The aim of this study was to demonstrate the enhancement in the dispersion of nonmotile bacteria (Mycobacterium gilvum VM552, a polycyclic aromatic hydrocarbon-degrader, and Sphingobium sp. D4, a hexachlorocyclohexane-degrader, through micrometer-sized pores near the exclusion-cell-size limit, in the presence of motile Pseudomonas putida G7 cells. For this purpose, we used bioreactors equipped with two chambers that were separated with membrane filters with 3, 5, and 12 μm pore sizes and capillary polydimethylsiloxane (PDMS) microarrays (20 μm × 35 μm × 2.2 mm). The cotransport of nonmotile bacteria occurred exclusively in the presence of a chemoattractant concentration gradient, and therefore, a directed flow of motile cells. This cotransport was more intense in the presence of larger pores (12 μm) and strong chemoeffectors (γ-aminobutyric acid). The mechanism that governed cotransport at the cell scale involved mechanical pushing and hydrodynamic interactions. Chemotaxis-mediated cotransport of bacterial degraders and its implications in pore accessibility opens new avenues for the enhancement of bacterial dispersion in porous media and the biodegradation of heterogeneously contaminated scenarios.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.2c03149</identifier><identifier>PMID: 36103595</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Aromatic hydrocarbons ; Bacteria ; Biodegradation ; Bioreactors ; Cell size ; Chemotaxis ; Concentration gradient ; Dispersion ; Fluid filters ; Hexachlorocyclohexane ; Membrane filters ; Microorganisms ; Polycyclic aromatic hydrocarbons ; Polydimethylsiloxane ; Pores ; Porous media ; Pseudomonas putida ; Treatment and Resource Recovery ; γ-Aminobutyric acid</subject><ispartof>Environmental science &amp; technology, 2022-10, Vol.56 (19), p.13975-13984</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Oct 4, 2022</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a434t-d7942b807c51d903993513d0dc7583814eb9cbc70ebe98d4f7992f98a2b525613</citedby><cites>FETCH-LOGICAL-a434t-d7942b807c51d903993513d0dc7583814eb9cbc70ebe98d4f7992f98a2b525613</cites><orcidid>0000-0003-1672-5199 ; 0000-0001-9968-6150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.2c03149$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.2c03149$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Balseiro-Romero, María</creatorcontrib><creatorcontrib>Prieto-Fernández, Ángeles</creatorcontrib><creatorcontrib>Shor, Leslie M.</creatorcontrib><creatorcontrib>Ghoshal, Subhasis</creatorcontrib><creatorcontrib>Baveye, Philippe C.</creatorcontrib><creatorcontrib>Ortega-Calvo, José Julio</creatorcontrib><title>Chemotactic Bacteria Facilitate the Dispersion of Nonmotile Bacteria through Micrometer-Sized Pores in Engineered Porous Media</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Recent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe–microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porous systems. The aim of this study was to demonstrate the enhancement in the dispersion of nonmotile bacteria (Mycobacterium gilvum VM552, a polycyclic aromatic hydrocarbon-degrader, and Sphingobium sp. D4, a hexachlorocyclohexane-degrader, through micrometer-sized pores near the exclusion-cell-size limit, in the presence of motile Pseudomonas putida G7 cells. For this purpose, we used bioreactors equipped with two chambers that were separated with membrane filters with 3, 5, and 12 μm pore sizes and capillary polydimethylsiloxane (PDMS) microarrays (20 μm × 35 μm × 2.2 mm). The cotransport of nonmotile bacteria occurred exclusively in the presence of a chemoattractant concentration gradient, and therefore, a directed flow of motile cells. This cotransport was more intense in the presence of larger pores (12 μm) and strong chemoeffectors (γ-aminobutyric acid). The mechanism that governed cotransport at the cell scale involved mechanical pushing and hydrodynamic interactions. Chemotaxis-mediated cotransport of bacterial degraders and its implications in pore accessibility opens new avenues for the enhancement of bacterial dispersion in porous media and the biodegradation of heterogeneously contaminated scenarios.</description><subject>Aromatic hydrocarbons</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Bioreactors</subject><subject>Cell size</subject><subject>Chemotaxis</subject><subject>Concentration gradient</subject><subject>Dispersion</subject><subject>Fluid filters</subject><subject>Hexachlorocyclohexane</subject><subject>Membrane filters</subject><subject>Microorganisms</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Polydimethylsiloxane</subject><subject>Pores</subject><subject>Porous media</subject><subject>Pseudomonas putida</subject><subject>Treatment and Resource Recovery</subject><subject>γ-Aminobutyric acid</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kd9rFDEQx4NY7LX67GvAF0H2mh-b2-RF0GurQquCCr6FbHb2NmU3uSbZQn3wbzfHHZUKPg3MfL5fZr6D0EtKlpQwemZsWkLKS2YJp7V6ghZUMFIJKehTtCCE8krx1c9jdJLSDSGEcSKfoWO-ooQLJRbo93qAKWRjs7P4fSkQncGXxrrRZZMB5wHwuUtbiMkFj0OPPwdfFG6Ev3weYpg3A752NoYJSrP65n5Bh7-GCAk7jy_8xnmAuO-FOeFr6Jx5jo56MyZ4cain6Mflxff1x-rqy4dP63dXlal5nauuUTVrJWmsoJ0iXCkuKO9IZxshuaQ1tMq2tiHQgpJd3TdKsV5Jw1rBxIryU_R277ud2wk6Cz5HM-ptdJOJ9zoYpx9PvBv0JtxpJXgJUxaD1weDGG7nErmeXLIwjsZDuUazhtYrIRRXBX31D3oT5ujLeYVijEulGlKosz1VEkspQv-wDCV691tdfqt36sNvi-LNXrEbPFj-j_4DDsindg</recordid><startdate>20221004</startdate><enddate>20221004</enddate><creator>Balseiro-Romero, María</creator><creator>Prieto-Fernández, Ángeles</creator><creator>Shor, Leslie M.</creator><creator>Ghoshal, Subhasis</creator><creator>Baveye, Philippe C.</creator><creator>Ortega-Calvo, José Julio</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1672-5199</orcidid><orcidid>https://orcid.org/0000-0001-9968-6150</orcidid></search><sort><creationdate>20221004</creationdate><title>Chemotactic Bacteria Facilitate the Dispersion of Nonmotile Bacteria through Micrometer-Sized Pores in Engineered Porous Media</title><author>Balseiro-Romero, María ; Prieto-Fernández, Ángeles ; Shor, Leslie M. ; Ghoshal, Subhasis ; Baveye, Philippe C. ; Ortega-Calvo, José Julio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a434t-d7942b807c51d903993513d0dc7583814eb9cbc70ebe98d4f7992f98a2b525613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aromatic hydrocarbons</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Bioreactors</topic><topic>Cell size</topic><topic>Chemotaxis</topic><topic>Concentration gradient</topic><topic>Dispersion</topic><topic>Fluid filters</topic><topic>Hexachlorocyclohexane</topic><topic>Membrane filters</topic><topic>Microorganisms</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Polydimethylsiloxane</topic><topic>Pores</topic><topic>Porous media</topic><topic>Pseudomonas putida</topic><topic>Treatment and Resource Recovery</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balseiro-Romero, María</creatorcontrib><creatorcontrib>Prieto-Fernández, Ángeles</creatorcontrib><creatorcontrib>Shor, Leslie M.</creatorcontrib><creatorcontrib>Ghoshal, Subhasis</creatorcontrib><creatorcontrib>Baveye, Philippe C.</creatorcontrib><creatorcontrib>Ortega-Calvo, José Julio</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balseiro-Romero, María</au><au>Prieto-Fernández, Ángeles</au><au>Shor, Leslie M.</au><au>Ghoshal, Subhasis</au><au>Baveye, Philippe C.</au><au>Ortega-Calvo, José Julio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemotactic Bacteria Facilitate the Dispersion of Nonmotile Bacteria through Micrometer-Sized Pores in Engineered Porous Media</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2022-10-04</date><risdate>2022</risdate><volume>56</volume><issue>19</issue><spage>13975</spage><epage>13984</epage><pages>13975-13984</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Recent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe–microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porous systems. The aim of this study was to demonstrate the enhancement in the dispersion of nonmotile bacteria (Mycobacterium gilvum VM552, a polycyclic aromatic hydrocarbon-degrader, and Sphingobium sp. D4, a hexachlorocyclohexane-degrader, through micrometer-sized pores near the exclusion-cell-size limit, in the presence of motile Pseudomonas putida G7 cells. For this purpose, we used bioreactors equipped with two chambers that were separated with membrane filters with 3, 5, and 12 μm pore sizes and capillary polydimethylsiloxane (PDMS) microarrays (20 μm × 35 μm × 2.2 mm). The cotransport of nonmotile bacteria occurred exclusively in the presence of a chemoattractant concentration gradient, and therefore, a directed flow of motile cells. This cotransport was more intense in the presence of larger pores (12 μm) and strong chemoeffectors (γ-aminobutyric acid). The mechanism that governed cotransport at the cell scale involved mechanical pushing and hydrodynamic interactions. Chemotaxis-mediated cotransport of bacterial degraders and its implications in pore accessibility opens new avenues for the enhancement of bacterial dispersion in porous media and the biodegradation of heterogeneously contaminated scenarios.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><pmid>36103595</pmid><doi>10.1021/acs.est.2c03149</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1672-5199</orcidid><orcidid>https://orcid.org/0000-0001-9968-6150</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2022-10, Vol.56 (19), p.13975-13984
issn 0013-936X
1520-5851
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9535858
source American Chemical Society Publications
subjects Aromatic hydrocarbons
Bacteria
Biodegradation
Bioreactors
Cell size
Chemotaxis
Concentration gradient
Dispersion
Fluid filters
Hexachlorocyclohexane
Membrane filters
Microorganisms
Polycyclic aromatic hydrocarbons
Polydimethylsiloxane
Pores
Porous media
Pseudomonas putida
Treatment and Resource Recovery
γ-Aminobutyric acid
title Chemotactic Bacteria Facilitate the Dispersion of Nonmotile Bacteria through Micrometer-Sized Pores in Engineered Porous Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemotactic%20Bacteria%20Facilitate%20the%20Dispersion%20of%20Nonmotile%20Bacteria%20through%20Micrometer-Sized%20Pores%20in%20Engineered%20Porous%20Media&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Balseiro-Romero,%20Mari%CC%81a&rft.date=2022-10-04&rft.volume=56&rft.issue=19&rft.spage=13975&rft.epage=13984&rft.pages=13975-13984&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.2c03149&rft_dat=%3Cproquest_pubme%3E2714655939%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722389970&rft_id=info:pmid/36103595&rfr_iscdi=true