Chemotactic Bacteria Facilitate the Dispersion of Nonmotile Bacteria through Micrometer-Sized Pores in Engineered Porous Media
Recent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe–microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porou...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2022-10, Vol.56 (19), p.13975-13984 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13984 |
---|---|
container_issue | 19 |
container_start_page | 13975 |
container_title | Environmental science & technology |
container_volume | 56 |
creator | Balseiro-Romero, María Prieto-Fernández, Ángeles Shor, Leslie M. Ghoshal, Subhasis Baveye, Philippe C. Ortega-Calvo, José Julio |
description | Recent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe–microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porous systems. The aim of this study was to demonstrate the enhancement in the dispersion of nonmotile bacteria (Mycobacterium gilvum VM552, a polycyclic aromatic hydrocarbon-degrader, and Sphingobium sp. D4, a hexachlorocyclohexane-degrader, through micrometer-sized pores near the exclusion-cell-size limit, in the presence of motile Pseudomonas putida G7 cells. For this purpose, we used bioreactors equipped with two chambers that were separated with membrane filters with 3, 5, and 12 μm pore sizes and capillary polydimethylsiloxane (PDMS) microarrays (20 μm × 35 μm × 2.2 mm). The cotransport of nonmotile bacteria occurred exclusively in the presence of a chemoattractant concentration gradient, and therefore, a directed flow of motile cells. This cotransport was more intense in the presence of larger pores (12 μm) and strong chemoeffectors (γ-aminobutyric acid). The mechanism that governed cotransport at the cell scale involved mechanical pushing and hydrodynamic interactions. Chemotaxis-mediated cotransport of bacterial degraders and its implications in pore accessibility opens new avenues for the enhancement of bacterial dispersion in porous media and the biodegradation of heterogeneously contaminated scenarios. |
doi_str_mv | 10.1021/acs.est.2c03149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9535858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714655939</sourcerecordid><originalsourceid>FETCH-LOGICAL-a434t-d7942b807c51d903993513d0dc7583814eb9cbc70ebe98d4f7992f98a2b525613</originalsourceid><addsrcrecordid>eNp1kd9rFDEQx4NY7LX67GvAF0H2mh-b2-RF0GurQquCCr6FbHb2NmU3uSbZQn3wbzfHHZUKPg3MfL5fZr6D0EtKlpQwemZsWkLKS2YJp7V6ghZUMFIJKehTtCCE8krx1c9jdJLSDSGEcSKfoWO-ooQLJRbo93qAKWRjs7P4fSkQncGXxrrRZZMB5wHwuUtbiMkFj0OPPwdfFG6Ev3weYpg3A752NoYJSrP65n5Bh7-GCAk7jy_8xnmAuO-FOeFr6Jx5jo56MyZ4cain6Mflxff1x-rqy4dP63dXlal5nauuUTVrJWmsoJ0iXCkuKO9IZxshuaQ1tMq2tiHQgpJd3TdKsV5Jw1rBxIryU_R277ud2wk6Cz5HM-ptdJOJ9zoYpx9PvBv0JtxpJXgJUxaD1weDGG7nErmeXLIwjsZDuUazhtYrIRRXBX31D3oT5ujLeYVijEulGlKosz1VEkspQv-wDCV691tdfqt36sNvi-LNXrEbPFj-j_4DDsindg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722389970</pqid></control><display><type>article</type><title>Chemotactic Bacteria Facilitate the Dispersion of Nonmotile Bacteria through Micrometer-Sized Pores in Engineered Porous Media</title><source>American Chemical Society Publications</source><creator>Balseiro-Romero, María ; Prieto-Fernández, Ángeles ; Shor, Leslie M. ; Ghoshal, Subhasis ; Baveye, Philippe C. ; Ortega-Calvo, José Julio</creator><creatorcontrib>Balseiro-Romero, María ; Prieto-Fernández, Ángeles ; Shor, Leslie M. ; Ghoshal, Subhasis ; Baveye, Philippe C. ; Ortega-Calvo, José Julio</creatorcontrib><description>Recent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe–microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porous systems. The aim of this study was to demonstrate the enhancement in the dispersion of nonmotile bacteria (Mycobacterium gilvum VM552, a polycyclic aromatic hydrocarbon-degrader, and Sphingobium sp. D4, a hexachlorocyclohexane-degrader, through micrometer-sized pores near the exclusion-cell-size limit, in the presence of motile Pseudomonas putida G7 cells. For this purpose, we used bioreactors equipped with two chambers that were separated with membrane filters with 3, 5, and 12 μm pore sizes and capillary polydimethylsiloxane (PDMS) microarrays (20 μm × 35 μm × 2.2 mm). The cotransport of nonmotile bacteria occurred exclusively in the presence of a chemoattractant concentration gradient, and therefore, a directed flow of motile cells. This cotransport was more intense in the presence of larger pores (12 μm) and strong chemoeffectors (γ-aminobutyric acid). The mechanism that governed cotransport at the cell scale involved mechanical pushing and hydrodynamic interactions. Chemotaxis-mediated cotransport of bacterial degraders and its implications in pore accessibility opens new avenues for the enhancement of bacterial dispersion in porous media and the biodegradation of heterogeneously contaminated scenarios.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.2c03149</identifier><identifier>PMID: 36103595</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Aromatic hydrocarbons ; Bacteria ; Biodegradation ; Bioreactors ; Cell size ; Chemotaxis ; Concentration gradient ; Dispersion ; Fluid filters ; Hexachlorocyclohexane ; Membrane filters ; Microorganisms ; Polycyclic aromatic hydrocarbons ; Polydimethylsiloxane ; Pores ; Porous media ; Pseudomonas putida ; Treatment and Resource Recovery ; γ-Aminobutyric acid</subject><ispartof>Environmental science & technology, 2022-10, Vol.56 (19), p.13975-13984</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Oct 4, 2022</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a434t-d7942b807c51d903993513d0dc7583814eb9cbc70ebe98d4f7992f98a2b525613</citedby><cites>FETCH-LOGICAL-a434t-d7942b807c51d903993513d0dc7583814eb9cbc70ebe98d4f7992f98a2b525613</cites><orcidid>0000-0003-1672-5199 ; 0000-0001-9968-6150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.2c03149$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.2c03149$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Balseiro-Romero, María</creatorcontrib><creatorcontrib>Prieto-Fernández, Ángeles</creatorcontrib><creatorcontrib>Shor, Leslie M.</creatorcontrib><creatorcontrib>Ghoshal, Subhasis</creatorcontrib><creatorcontrib>Baveye, Philippe C.</creatorcontrib><creatorcontrib>Ortega-Calvo, José Julio</creatorcontrib><title>Chemotactic Bacteria Facilitate the Dispersion of Nonmotile Bacteria through Micrometer-Sized Pores in Engineered Porous Media</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Recent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe–microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porous systems. The aim of this study was to demonstrate the enhancement in the dispersion of nonmotile bacteria (Mycobacterium gilvum VM552, a polycyclic aromatic hydrocarbon-degrader, and Sphingobium sp. D4, a hexachlorocyclohexane-degrader, through micrometer-sized pores near the exclusion-cell-size limit, in the presence of motile Pseudomonas putida G7 cells. For this purpose, we used bioreactors equipped with two chambers that were separated with membrane filters with 3, 5, and 12 μm pore sizes and capillary polydimethylsiloxane (PDMS) microarrays (20 μm × 35 μm × 2.2 mm). The cotransport of nonmotile bacteria occurred exclusively in the presence of a chemoattractant concentration gradient, and therefore, a directed flow of motile cells. This cotransport was more intense in the presence of larger pores (12 μm) and strong chemoeffectors (γ-aminobutyric acid). The mechanism that governed cotransport at the cell scale involved mechanical pushing and hydrodynamic interactions. Chemotaxis-mediated cotransport of bacterial degraders and its implications in pore accessibility opens new avenues for the enhancement of bacterial dispersion in porous media and the biodegradation of heterogeneously contaminated scenarios.</description><subject>Aromatic hydrocarbons</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Bioreactors</subject><subject>Cell size</subject><subject>Chemotaxis</subject><subject>Concentration gradient</subject><subject>Dispersion</subject><subject>Fluid filters</subject><subject>Hexachlorocyclohexane</subject><subject>Membrane filters</subject><subject>Microorganisms</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Polydimethylsiloxane</subject><subject>Pores</subject><subject>Porous media</subject><subject>Pseudomonas putida</subject><subject>Treatment and Resource Recovery</subject><subject>γ-Aminobutyric acid</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kd9rFDEQx4NY7LX67GvAF0H2mh-b2-RF0GurQquCCr6FbHb2NmU3uSbZQn3wbzfHHZUKPg3MfL5fZr6D0EtKlpQwemZsWkLKS2YJp7V6ghZUMFIJKehTtCCE8krx1c9jdJLSDSGEcSKfoWO-ooQLJRbo93qAKWRjs7P4fSkQncGXxrrRZZMB5wHwuUtbiMkFj0OPPwdfFG6Ev3weYpg3A752NoYJSrP65n5Bh7-GCAk7jy_8xnmAuO-FOeFr6Jx5jo56MyZ4cain6Mflxff1x-rqy4dP63dXlal5nauuUTVrJWmsoJ0iXCkuKO9IZxshuaQ1tMq2tiHQgpJd3TdKsV5Jw1rBxIryU_R277ud2wk6Cz5HM-ptdJOJ9zoYpx9PvBv0JtxpJXgJUxaD1weDGG7nErmeXLIwjsZDuUazhtYrIRRXBX31D3oT5ujLeYVijEulGlKosz1VEkspQv-wDCV691tdfqt36sNvi-LNXrEbPFj-j_4DDsindg</recordid><startdate>20221004</startdate><enddate>20221004</enddate><creator>Balseiro-Romero, María</creator><creator>Prieto-Fernández, Ángeles</creator><creator>Shor, Leslie M.</creator><creator>Ghoshal, Subhasis</creator><creator>Baveye, Philippe C.</creator><creator>Ortega-Calvo, José Julio</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1672-5199</orcidid><orcidid>https://orcid.org/0000-0001-9968-6150</orcidid></search><sort><creationdate>20221004</creationdate><title>Chemotactic Bacteria Facilitate the Dispersion of Nonmotile Bacteria through Micrometer-Sized Pores in Engineered Porous Media</title><author>Balseiro-Romero, María ; Prieto-Fernández, Ángeles ; Shor, Leslie M. ; Ghoshal, Subhasis ; Baveye, Philippe C. ; Ortega-Calvo, José Julio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a434t-d7942b807c51d903993513d0dc7583814eb9cbc70ebe98d4f7992f98a2b525613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aromatic hydrocarbons</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Bioreactors</topic><topic>Cell size</topic><topic>Chemotaxis</topic><topic>Concentration gradient</topic><topic>Dispersion</topic><topic>Fluid filters</topic><topic>Hexachlorocyclohexane</topic><topic>Membrane filters</topic><topic>Microorganisms</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Polydimethylsiloxane</topic><topic>Pores</topic><topic>Porous media</topic><topic>Pseudomonas putida</topic><topic>Treatment and Resource Recovery</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balseiro-Romero, María</creatorcontrib><creatorcontrib>Prieto-Fernández, Ángeles</creatorcontrib><creatorcontrib>Shor, Leslie M.</creatorcontrib><creatorcontrib>Ghoshal, Subhasis</creatorcontrib><creatorcontrib>Baveye, Philippe C.</creatorcontrib><creatorcontrib>Ortega-Calvo, José Julio</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balseiro-Romero, María</au><au>Prieto-Fernández, Ángeles</au><au>Shor, Leslie M.</au><au>Ghoshal, Subhasis</au><au>Baveye, Philippe C.</au><au>Ortega-Calvo, José Julio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemotactic Bacteria Facilitate the Dispersion of Nonmotile Bacteria through Micrometer-Sized Pores in Engineered Porous Media</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2022-10-04</date><risdate>2022</risdate><volume>56</volume><issue>19</issue><spage>13975</spage><epage>13984</epage><pages>13975-13984</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Recent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe–microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porous systems. The aim of this study was to demonstrate the enhancement in the dispersion of nonmotile bacteria (Mycobacterium gilvum VM552, a polycyclic aromatic hydrocarbon-degrader, and Sphingobium sp. D4, a hexachlorocyclohexane-degrader, through micrometer-sized pores near the exclusion-cell-size limit, in the presence of motile Pseudomonas putida G7 cells. For this purpose, we used bioreactors equipped with two chambers that were separated with membrane filters with 3, 5, and 12 μm pore sizes and capillary polydimethylsiloxane (PDMS) microarrays (20 μm × 35 μm × 2.2 mm). The cotransport of nonmotile bacteria occurred exclusively in the presence of a chemoattractant concentration gradient, and therefore, a directed flow of motile cells. This cotransport was more intense in the presence of larger pores (12 μm) and strong chemoeffectors (γ-aminobutyric acid). The mechanism that governed cotransport at the cell scale involved mechanical pushing and hydrodynamic interactions. Chemotaxis-mediated cotransport of bacterial degraders and its implications in pore accessibility opens new avenues for the enhancement of bacterial dispersion in porous media and the biodegradation of heterogeneously contaminated scenarios.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><pmid>36103595</pmid><doi>10.1021/acs.est.2c03149</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1672-5199</orcidid><orcidid>https://orcid.org/0000-0001-9968-6150</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2022-10, Vol.56 (19), p.13975-13984 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9535858 |
source | American Chemical Society Publications |
subjects | Aromatic hydrocarbons Bacteria Biodegradation Bioreactors Cell size Chemotaxis Concentration gradient Dispersion Fluid filters Hexachlorocyclohexane Membrane filters Microorganisms Polycyclic aromatic hydrocarbons Polydimethylsiloxane Pores Porous media Pseudomonas putida Treatment and Resource Recovery γ-Aminobutyric acid |
title | Chemotactic Bacteria Facilitate the Dispersion of Nonmotile Bacteria through Micrometer-Sized Pores in Engineered Porous Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemotactic%20Bacteria%20Facilitate%20the%20Dispersion%20of%20Nonmotile%20Bacteria%20through%20Micrometer-Sized%20Pores%20in%20Engineered%20Porous%20Media&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Balseiro-Romero,%20Mari%CC%81a&rft.date=2022-10-04&rft.volume=56&rft.issue=19&rft.spage=13975&rft.epage=13984&rft.pages=13975-13984&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.2c03149&rft_dat=%3Cproquest_pubme%3E2714655939%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722389970&rft_id=info:pmid/36103595&rfr_iscdi=true |