EPAC Regulates Melanoma Growth by Stimulating mTORC1 Signaling and Loss of EPAC Signaling Dependence Correlates with Melanoma Progression

Exchange proteins directly activated by cAMP (EPAC) belong to a family of RAP guanine nucleotide exchange factors (RAPGEF). EPAC1/2 (RAPGEF3/4) activates RAP1 and the alternative cAMP signaling pathway. We previously showed that the differential growth response of primary and metastatic melanoma cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cancer research 2022-10, Vol.20 (10), p.1548-1560
Hauptverfasser: Krishnan, Aishwarya, Bhasker, Aishwarya I, Singh, Mithalesh K, Rodriguez, Carlos I, Pérez, Edgardo Castro, Altameemi, Sarah, Lares, Marcos, Khan, Hamidullah, Ndiaye, Mary, Ahmad, Nihal, Schieke, Stefan M, Setaluri, Vijayasaradhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1560
container_issue 10
container_start_page 1548
container_title Molecular cancer research
container_volume 20
creator Krishnan, Aishwarya
Bhasker, Aishwarya I
Singh, Mithalesh K
Rodriguez, Carlos I
Pérez, Edgardo Castro
Altameemi, Sarah
Lares, Marcos
Khan, Hamidullah
Ndiaye, Mary
Ahmad, Nihal
Schieke, Stefan M
Setaluri, Vijayasaradhi
description Exchange proteins directly activated by cAMP (EPAC) belong to a family of RAP guanine nucleotide exchange factors (RAPGEF). EPAC1/2 (RAPGEF3/4) activates RAP1 and the alternative cAMP signaling pathway. We previously showed that the differential growth response of primary and metastatic melanoma cells to cAMP is mediated by EPAC. However, the mechanisms responsible for this differential response to EPAC signaling are not understood. In this study, we show that pharmacologic inhibition or siRNA-mediated knockdown of EPAC selectively inhibits the growth and survival of primary melanoma cells by downregulation of cell-cycle proteins and inhibiting the cell-cycle progression independent of ERK1/2 phosphorylation. EPAC inhibition results in upregulation of AKT phosphorylation but a downregulation of mTORC1 activity and its downstream effectors. We also show that EPAC regulates both glycolysis and oxidative phosphorylation, and production of mitochondrial reactive oxygen species, preferentially in primary melanoma cells. Employing a series of genetically matched primary and lymph node metastatic (LNM) melanoma cells, and distant organ metastatic melanoma cells, we show that the LNM and metastatic melanoma cells become progressively less responsive and refractory to EPAC inhibition suggesting loss of dependency on EPAC signaling correlates with melanoma progression. Analysis of The Cancer Genome Atlas dataset showed that lower RAPGEF3, RAPGEF4 mRNA expression in primary tumor is a predictor of better disease-free survival of patients diagnosed with primary melanoma suggesting that EPAC signaling facilitates tumor progression and EPAC is a useful prognostic marker. These data highlight EPAC signaling as a potential target for prevention of melanoma progression. This study establishes loss of dependency on EPAC-mTORC1 signaling as hallmark of primary melanoma evolution and targeting this escape mechanism is a promising strategy for metastatic melanoma.
doi_str_mv 10.1158/1541-7786.MCR-22-0026
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9532357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691054563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-d826c49b6f8f90c07efb3bc0ac1f04528261c3f96f0668d9e9327c5d9599ba3f3</originalsourceid><addsrcrecordid>eNpVkc1u1DAUhS0Eoj_wCCAv2aT4J3biDVKVlhZpqlbTsrYc5zo1SuzBzlD1EXhrEmYYYGXL59xzbH8IvaPkjFJRf6SipEVV1fLsplkXjBWEMPkCHVMhqoJTJl4u-73nCJ3k_G12EFrJ1-iIi5qXkspj9PPy7rzBa-i3g5kg4xsYTIijwVcpPk2PuH3G95MfF9WHHo8Pt-uG4nvfBzMsByZ0eBVzxtHh31F_pQvYQOggWMBNTAl2BU9-Tj203KXYJ8jZx_AGvXJmyPB2v56ir58vH5rrYnV79aU5XxW2pHQquppJW6pWutopYkkFruWtJcZSR0rBZpla7pR0RMq6U6A4q6zolFCqNdzxU_Rpl7vZtiN0FsKUzKA3yY8mPetovP5fCf5R9_GHVoIzLqo54MM-IMXvW8iTHn22MMxPgrjNmklFiSiF5LNV7Kw2zX-UwB1qKNELRr0g0gsiPWPUjOkF4zz3_t87Hqb-cOO_AFwqmxY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691054563</pqid></control><display><type>article</type><title>EPAC Regulates Melanoma Growth by Stimulating mTORC1 Signaling and Loss of EPAC Signaling Dependence Correlates with Melanoma Progression</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Krishnan, Aishwarya ; Bhasker, Aishwarya I ; Singh, Mithalesh K ; Rodriguez, Carlos I ; Pérez, Edgardo Castro ; Altameemi, Sarah ; Lares, Marcos ; Khan, Hamidullah ; Ndiaye, Mary ; Ahmad, Nihal ; Schieke, Stefan M ; Setaluri, Vijayasaradhi</creator><creatorcontrib>Krishnan, Aishwarya ; Bhasker, Aishwarya I ; Singh, Mithalesh K ; Rodriguez, Carlos I ; Pérez, Edgardo Castro ; Altameemi, Sarah ; Lares, Marcos ; Khan, Hamidullah ; Ndiaye, Mary ; Ahmad, Nihal ; Schieke, Stefan M ; Setaluri, Vijayasaradhi</creatorcontrib><description>Exchange proteins directly activated by cAMP (EPAC) belong to a family of RAP guanine nucleotide exchange factors (RAPGEF). EPAC1/2 (RAPGEF3/4) activates RAP1 and the alternative cAMP signaling pathway. We previously showed that the differential growth response of primary and metastatic melanoma cells to cAMP is mediated by EPAC. However, the mechanisms responsible for this differential response to EPAC signaling are not understood. In this study, we show that pharmacologic inhibition or siRNA-mediated knockdown of EPAC selectively inhibits the growth and survival of primary melanoma cells by downregulation of cell-cycle proteins and inhibiting the cell-cycle progression independent of ERK1/2 phosphorylation. EPAC inhibition results in upregulation of AKT phosphorylation but a downregulation of mTORC1 activity and its downstream effectors. We also show that EPAC regulates both glycolysis and oxidative phosphorylation, and production of mitochondrial reactive oxygen species, preferentially in primary melanoma cells. Employing a series of genetically matched primary and lymph node metastatic (LNM) melanoma cells, and distant organ metastatic melanoma cells, we show that the LNM and metastatic melanoma cells become progressively less responsive and refractory to EPAC inhibition suggesting loss of dependency on EPAC signaling correlates with melanoma progression. Analysis of The Cancer Genome Atlas dataset showed that lower RAPGEF3, RAPGEF4 mRNA expression in primary tumor is a predictor of better disease-free survival of patients diagnosed with primary melanoma suggesting that EPAC signaling facilitates tumor progression and EPAC is a useful prognostic marker. These data highlight EPAC signaling as a potential target for prevention of melanoma progression. This study establishes loss of dependency on EPAC-mTORC1 signaling as hallmark of primary melanoma evolution and targeting this escape mechanism is a promising strategy for metastatic melanoma.</description><identifier>ISSN: 1541-7786</identifier><identifier>EISSN: 1557-3125</identifier><identifier>DOI: 10.1158/1541-7786.MCR-22-0026</identifier><identifier>PMID: 35834616</identifier><language>eng</language><publisher>United States</publisher><subject>Guanine Nucleotide Exchange Factors - genetics ; Guanine Nucleotide Exchange Factors - metabolism ; Humans ; Mechanistic Target of Rapamycin Complex 1 - genetics ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Melanoma - pathology ; Proto-Oncogene Proteins c-akt - metabolism ; Reactive Oxygen Species ; RNA, Messenger - genetics ; RNA, Small Interfering ; Signal Transduction</subject><ispartof>Molecular cancer research, 2022-10, Vol.20 (10), p.1548-1560</ispartof><rights>2022 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-d826c49b6f8f90c07efb3bc0ac1f04528261c3f96f0668d9e9327c5d9599ba3f3</citedby><cites>FETCH-LOGICAL-c411t-d826c49b6f8f90c07efb3bc0ac1f04528261c3f96f0668d9e9327c5d9599ba3f3</cites><orcidid>0000-0002-5254-1840 ; 0000-0002-1812-9860 ; 0000-0003-4884-9479 ; 0000-0002-4239-9887 ; 0000-0001-7223-7806 ; 0000-0002-6762-0963 ; 0000-0001-9783-0788 ; 0000-0001-6468-7663 ; 0000-0002-4325-6132 ; 0000-0001-6191-5966 ; 0000-0001-9292-5550 ; 0000-0003-2155-2368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35834616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krishnan, Aishwarya</creatorcontrib><creatorcontrib>Bhasker, Aishwarya I</creatorcontrib><creatorcontrib>Singh, Mithalesh K</creatorcontrib><creatorcontrib>Rodriguez, Carlos I</creatorcontrib><creatorcontrib>Pérez, Edgardo Castro</creatorcontrib><creatorcontrib>Altameemi, Sarah</creatorcontrib><creatorcontrib>Lares, Marcos</creatorcontrib><creatorcontrib>Khan, Hamidullah</creatorcontrib><creatorcontrib>Ndiaye, Mary</creatorcontrib><creatorcontrib>Ahmad, Nihal</creatorcontrib><creatorcontrib>Schieke, Stefan M</creatorcontrib><creatorcontrib>Setaluri, Vijayasaradhi</creatorcontrib><title>EPAC Regulates Melanoma Growth by Stimulating mTORC1 Signaling and Loss of EPAC Signaling Dependence Correlates with Melanoma Progression</title><title>Molecular cancer research</title><addtitle>Mol Cancer Res</addtitle><description>Exchange proteins directly activated by cAMP (EPAC) belong to a family of RAP guanine nucleotide exchange factors (RAPGEF). EPAC1/2 (RAPGEF3/4) activates RAP1 and the alternative cAMP signaling pathway. We previously showed that the differential growth response of primary and metastatic melanoma cells to cAMP is mediated by EPAC. However, the mechanisms responsible for this differential response to EPAC signaling are not understood. In this study, we show that pharmacologic inhibition or siRNA-mediated knockdown of EPAC selectively inhibits the growth and survival of primary melanoma cells by downregulation of cell-cycle proteins and inhibiting the cell-cycle progression independent of ERK1/2 phosphorylation. EPAC inhibition results in upregulation of AKT phosphorylation but a downregulation of mTORC1 activity and its downstream effectors. We also show that EPAC regulates both glycolysis and oxidative phosphorylation, and production of mitochondrial reactive oxygen species, preferentially in primary melanoma cells. Employing a series of genetically matched primary and lymph node metastatic (LNM) melanoma cells, and distant organ metastatic melanoma cells, we show that the LNM and metastatic melanoma cells become progressively less responsive and refractory to EPAC inhibition suggesting loss of dependency on EPAC signaling correlates with melanoma progression. Analysis of The Cancer Genome Atlas dataset showed that lower RAPGEF3, RAPGEF4 mRNA expression in primary tumor is a predictor of better disease-free survival of patients diagnosed with primary melanoma suggesting that EPAC signaling facilitates tumor progression and EPAC is a useful prognostic marker. These data highlight EPAC signaling as a potential target for prevention of melanoma progression. This study establishes loss of dependency on EPAC-mTORC1 signaling as hallmark of primary melanoma evolution and targeting this escape mechanism is a promising strategy for metastatic melanoma.</description><subject>Guanine Nucleotide Exchange Factors - genetics</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Humans</subject><subject>Mechanistic Target of Rapamycin Complex 1 - genetics</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Melanoma - pathology</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Reactive Oxygen Species</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Small Interfering</subject><subject>Signal Transduction</subject><issn>1541-7786</issn><issn>1557-3125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1u1DAUhS0Eoj_wCCAv2aT4J3biDVKVlhZpqlbTsrYc5zo1SuzBzlD1EXhrEmYYYGXL59xzbH8IvaPkjFJRf6SipEVV1fLsplkXjBWEMPkCHVMhqoJTJl4u-73nCJ3k_G12EFrJ1-iIi5qXkspj9PPy7rzBa-i3g5kg4xsYTIijwVcpPk2PuH3G95MfF9WHHo8Pt-uG4nvfBzMsByZ0eBVzxtHh31F_pQvYQOggWMBNTAl2BU9-Tj203KXYJ8jZx_AGvXJmyPB2v56ir58vH5rrYnV79aU5XxW2pHQquppJW6pWutopYkkFruWtJcZSR0rBZpla7pR0RMq6U6A4q6zolFCqNdzxU_Rpl7vZtiN0FsKUzKA3yY8mPetovP5fCf5R9_GHVoIzLqo54MM-IMXvW8iTHn22MMxPgrjNmklFiSiF5LNV7Kw2zX-UwB1qKNELRr0g0gsiPWPUjOkF4zz3_t87Hqb-cOO_AFwqmxY</recordid><startdate>20221004</startdate><enddate>20221004</enddate><creator>Krishnan, Aishwarya</creator><creator>Bhasker, Aishwarya I</creator><creator>Singh, Mithalesh K</creator><creator>Rodriguez, Carlos I</creator><creator>Pérez, Edgardo Castro</creator><creator>Altameemi, Sarah</creator><creator>Lares, Marcos</creator><creator>Khan, Hamidullah</creator><creator>Ndiaye, Mary</creator><creator>Ahmad, Nihal</creator><creator>Schieke, Stefan M</creator><creator>Setaluri, Vijayasaradhi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5254-1840</orcidid><orcidid>https://orcid.org/0000-0002-1812-9860</orcidid><orcidid>https://orcid.org/0000-0003-4884-9479</orcidid><orcidid>https://orcid.org/0000-0002-4239-9887</orcidid><orcidid>https://orcid.org/0000-0001-7223-7806</orcidid><orcidid>https://orcid.org/0000-0002-6762-0963</orcidid><orcidid>https://orcid.org/0000-0001-9783-0788</orcidid><orcidid>https://orcid.org/0000-0001-6468-7663</orcidid><orcidid>https://orcid.org/0000-0002-4325-6132</orcidid><orcidid>https://orcid.org/0000-0001-6191-5966</orcidid><orcidid>https://orcid.org/0000-0001-9292-5550</orcidid><orcidid>https://orcid.org/0000-0003-2155-2368</orcidid></search><sort><creationdate>20221004</creationdate><title>EPAC Regulates Melanoma Growth by Stimulating mTORC1 Signaling and Loss of EPAC Signaling Dependence Correlates with Melanoma Progression</title><author>Krishnan, Aishwarya ; Bhasker, Aishwarya I ; Singh, Mithalesh K ; Rodriguez, Carlos I ; Pérez, Edgardo Castro ; Altameemi, Sarah ; Lares, Marcos ; Khan, Hamidullah ; Ndiaye, Mary ; Ahmad, Nihal ; Schieke, Stefan M ; Setaluri, Vijayasaradhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-d826c49b6f8f90c07efb3bc0ac1f04528261c3f96f0668d9e9327c5d9599ba3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Guanine Nucleotide Exchange Factors - genetics</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Humans</topic><topic>Mechanistic Target of Rapamycin Complex 1 - genetics</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Melanoma - pathology</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Reactive Oxygen Species</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Small Interfering</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, Aishwarya</creatorcontrib><creatorcontrib>Bhasker, Aishwarya I</creatorcontrib><creatorcontrib>Singh, Mithalesh K</creatorcontrib><creatorcontrib>Rodriguez, Carlos I</creatorcontrib><creatorcontrib>Pérez, Edgardo Castro</creatorcontrib><creatorcontrib>Altameemi, Sarah</creatorcontrib><creatorcontrib>Lares, Marcos</creatorcontrib><creatorcontrib>Khan, Hamidullah</creatorcontrib><creatorcontrib>Ndiaye, Mary</creatorcontrib><creatorcontrib>Ahmad, Nihal</creatorcontrib><creatorcontrib>Schieke, Stefan M</creatorcontrib><creatorcontrib>Setaluri, Vijayasaradhi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnan, Aishwarya</au><au>Bhasker, Aishwarya I</au><au>Singh, Mithalesh K</au><au>Rodriguez, Carlos I</au><au>Pérez, Edgardo Castro</au><au>Altameemi, Sarah</au><au>Lares, Marcos</au><au>Khan, Hamidullah</au><au>Ndiaye, Mary</au><au>Ahmad, Nihal</au><au>Schieke, Stefan M</au><au>Setaluri, Vijayasaradhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EPAC Regulates Melanoma Growth by Stimulating mTORC1 Signaling and Loss of EPAC Signaling Dependence Correlates with Melanoma Progression</atitle><jtitle>Molecular cancer research</jtitle><addtitle>Mol Cancer Res</addtitle><date>2022-10-04</date><risdate>2022</risdate><volume>20</volume><issue>10</issue><spage>1548</spage><epage>1560</epage><pages>1548-1560</pages><issn>1541-7786</issn><eissn>1557-3125</eissn><abstract>Exchange proteins directly activated by cAMP (EPAC) belong to a family of RAP guanine nucleotide exchange factors (RAPGEF). EPAC1/2 (RAPGEF3/4) activates RAP1 and the alternative cAMP signaling pathway. We previously showed that the differential growth response of primary and metastatic melanoma cells to cAMP is mediated by EPAC. However, the mechanisms responsible for this differential response to EPAC signaling are not understood. In this study, we show that pharmacologic inhibition or siRNA-mediated knockdown of EPAC selectively inhibits the growth and survival of primary melanoma cells by downregulation of cell-cycle proteins and inhibiting the cell-cycle progression independent of ERK1/2 phosphorylation. EPAC inhibition results in upregulation of AKT phosphorylation but a downregulation of mTORC1 activity and its downstream effectors. We also show that EPAC regulates both glycolysis and oxidative phosphorylation, and production of mitochondrial reactive oxygen species, preferentially in primary melanoma cells. Employing a series of genetically matched primary and lymph node metastatic (LNM) melanoma cells, and distant organ metastatic melanoma cells, we show that the LNM and metastatic melanoma cells become progressively less responsive and refractory to EPAC inhibition suggesting loss of dependency on EPAC signaling correlates with melanoma progression. Analysis of The Cancer Genome Atlas dataset showed that lower RAPGEF3, RAPGEF4 mRNA expression in primary tumor is a predictor of better disease-free survival of patients diagnosed with primary melanoma suggesting that EPAC signaling facilitates tumor progression and EPAC is a useful prognostic marker. These data highlight EPAC signaling as a potential target for prevention of melanoma progression. This study establishes loss of dependency on EPAC-mTORC1 signaling as hallmark of primary melanoma evolution and targeting this escape mechanism is a promising strategy for metastatic melanoma.</abstract><cop>United States</cop><pmid>35834616</pmid><doi>10.1158/1541-7786.MCR-22-0026</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5254-1840</orcidid><orcidid>https://orcid.org/0000-0002-1812-9860</orcidid><orcidid>https://orcid.org/0000-0003-4884-9479</orcidid><orcidid>https://orcid.org/0000-0002-4239-9887</orcidid><orcidid>https://orcid.org/0000-0001-7223-7806</orcidid><orcidid>https://orcid.org/0000-0002-6762-0963</orcidid><orcidid>https://orcid.org/0000-0001-9783-0788</orcidid><orcidid>https://orcid.org/0000-0001-6468-7663</orcidid><orcidid>https://orcid.org/0000-0002-4325-6132</orcidid><orcidid>https://orcid.org/0000-0001-6191-5966</orcidid><orcidid>https://orcid.org/0000-0001-9292-5550</orcidid><orcidid>https://orcid.org/0000-0003-2155-2368</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1541-7786
ispartof Molecular cancer research, 2022-10, Vol.20 (10), p.1548-1560
issn 1541-7786
1557-3125
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9532357
source MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Guanine Nucleotide Exchange Factors - genetics
Guanine Nucleotide Exchange Factors - metabolism
Humans
Mechanistic Target of Rapamycin Complex 1 - genetics
Mechanistic Target of Rapamycin Complex 1 - metabolism
Melanoma - pathology
Proto-Oncogene Proteins c-akt - metabolism
Reactive Oxygen Species
RNA, Messenger - genetics
RNA, Small Interfering
Signal Transduction
title EPAC Regulates Melanoma Growth by Stimulating mTORC1 Signaling and Loss of EPAC Signaling Dependence Correlates with Melanoma Progression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EPAC%20Regulates%20Melanoma%20Growth%20by%20Stimulating%20mTORC1%20Signaling%20and%20Loss%20of%20EPAC%20Signaling%20Dependence%20Correlates%20with%20Melanoma%20Progression&rft.jtitle=Molecular%20cancer%20research&rft.au=Krishnan,%20Aishwarya&rft.date=2022-10-04&rft.volume=20&rft.issue=10&rft.spage=1548&rft.epage=1560&rft.pages=1548-1560&rft.issn=1541-7786&rft.eissn=1557-3125&rft_id=info:doi/10.1158/1541-7786.MCR-22-0026&rft_dat=%3Cproquest_pubme%3E2691054563%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691054563&rft_id=info:pmid/35834616&rfr_iscdi=true