Survival Prediction of Children Undergoing Hematopoietic Stem Cell Transplantation Using Different Machine Learning Classifiers by Performing Chi-Square Test and Hyperparameter Optimization: A Retrospective Analysis
Bone marrow transplant (BMT) is an effective surgical treatment for bone marrow-related disorders. However, several associated risk factors can impair long-term survival after BMT. Machine learning (ML) technologies have been proven useful in survival prediction of BMT receivers along with the influ...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2022-09, Vol.2022, p.1-14 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2022 |
creator | Ratul, Ishrak Jahan Wani, Ummay Habiba Nishat, Mirza Muntasir Al-Monsur, Abdullah Ar-Rafi, Abrar Mohammad Faisal, Fahim Kabir, Mohammad Ridwan |
description | Bone marrow transplant (BMT) is an effective surgical treatment for bone marrow-related disorders. However, several associated risk factors can impair long-term survival after BMT. Machine learning (ML) technologies have been proven useful in survival prediction of BMT receivers along with the influences that limit their resilience. In this study, an efficient classification model predicting the survival of children undergoing BMT is presented using a public dataset. Several supervised ML methods were investigated in this regard with an 80-20 train-test split ratio. To ensure prediction with minimal time and resources, only the top 11 out of the 59 dataset features were considered using Chi-square feature selection method. Furthermore, hyperparameter optimization (HPO) using the grid search cross-validation (GSCV) technique was adopted to increase the accuracy of prediction. Four experiments were conducted utilizing a combination of default and optimized hyperparameters on the original and reduced datasets. Our investigation revealed that the top 11 features of HPO had the same prediction accuracy (94.73%) as the entire dataset with default parameters, however, requiring minimal time and resources. Hence, the proposed approach may aid in the development of a computer-aided diagnostic system with satisfactory accuracy and minimal computation time by utilizing medical data records. |
doi_str_mv | 10.1155/2022/9391136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9527434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722315429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-9fe5f9f558ee74da272df7b2008f70facc012310121efae445be769e75ef35e13</originalsourceid><addsrcrecordid>eNp9Uk2P0zAUjBBILAs3foCPSBDWTuK64YBUZYEiFe2KthK36DV5bh9K7KztFJU_yt_B_dBKXLjYlmY8b-ZpkuS14O-FkPIm41l2U-alEPnkSXIlVDFNJ0pMnz6--Y_nyQvvf3IuhZLiKvmzHN2e9tCxe4ctNYGsYVazakdd69CwtWnRbS2ZLZtjD8EOljBQw5YBe1Zh17GVA-OHDkyA0_e1P7JvSWuMCoF9g2ZHBtkCwZkjVHXgPWlC59nmwO7Raev6E7KjdPkwgkO2Qh8YmJbNDwO6ARz0GNCxuyFQT79Poz6wGfuOwVk_YLS-RzYz0B08-ZfJMw2dx1eX-zpZf_60qubp4u7L12q2SJu8VCEtNUpdaimniKpoIVNZq9Um43yqFdfQNFxkuYiHQA1YFHKDalKikqhziSK_Tj6edYdx02PbxLwOunpw1IM71Bao_hcxtKu3dl-XMlNFXkSBNxcBZx_GmLnuyTdxrWDQjr6OjqIBWWRlpL47U5sY2DvUj2MEr48FqI8FqC8FiPS3Z3pcfgu_6P_sv_Irt_o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722315429</pqid></control><display><type>article</type><title>Survival Prediction of Children Undergoing Hematopoietic Stem Cell Transplantation Using Different Machine Learning Classifiers by Performing Chi-Square Test and Hyperparameter Optimization: A Retrospective Analysis</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Ratul, Ishrak Jahan ; Wani, Ummay Habiba ; Nishat, Mirza Muntasir ; Al-Monsur, Abdullah ; Ar-Rafi, Abrar Mohammad ; Faisal, Fahim ; Kabir, Mohammad Ridwan</creator><contributor>Kaluri, Rajesh</contributor><creatorcontrib>Ratul, Ishrak Jahan ; Wani, Ummay Habiba ; Nishat, Mirza Muntasir ; Al-Monsur, Abdullah ; Ar-Rafi, Abrar Mohammad ; Faisal, Fahim ; Kabir, Mohammad Ridwan ; Kaluri, Rajesh</creatorcontrib><description>Bone marrow transplant (BMT) is an effective surgical treatment for bone marrow-related disorders. However, several associated risk factors can impair long-term survival after BMT. Machine learning (ML) technologies have been proven useful in survival prediction of BMT receivers along with the influences that limit their resilience. In this study, an efficient classification model predicting the survival of children undergoing BMT is presented using a public dataset. Several supervised ML methods were investigated in this regard with an 80-20 train-test split ratio. To ensure prediction with minimal time and resources, only the top 11 out of the 59 dataset features were considered using Chi-square feature selection method. Furthermore, hyperparameter optimization (HPO) using the grid search cross-validation (GSCV) technique was adopted to increase the accuracy of prediction. Four experiments were conducted utilizing a combination of default and optimized hyperparameters on the original and reduced datasets. Our investigation revealed that the top 11 features of HPO had the same prediction accuracy (94.73%) as the entire dataset with default parameters, however, requiring minimal time and resources. Hence, the proposed approach may aid in the development of a computer-aided diagnostic system with satisfactory accuracy and minimal computation time by utilizing medical data records.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2022/9391136</identifier><language>eng</language><publisher>Hindawi</publisher><ispartof>Computational and mathematical methods in medicine, 2022-09, Vol.2022, p.1-14</ispartof><rights>Copyright © 2022 Ishrak Jahan Ratul et al.</rights><rights>Copyright © 2022 Ishrak Jahan Ratul et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-9fe5f9f558ee74da272df7b2008f70facc012310121efae445be769e75ef35e13</citedby><cites>FETCH-LOGICAL-c397t-9fe5f9f558ee74da272df7b2008f70facc012310121efae445be769e75ef35e13</cites><orcidid>0000-0002-2894-3962 ; 0000-0002-1799-078X ; 0000-0001-8446-7094 ; 0000-0001-6124-4971 ; 0000-0001-9835-6299 ; 0000-0002-9631-1836 ; 0000-0002-0853-0319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527434/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527434/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><contributor>Kaluri, Rajesh</contributor><creatorcontrib>Ratul, Ishrak Jahan</creatorcontrib><creatorcontrib>Wani, Ummay Habiba</creatorcontrib><creatorcontrib>Nishat, Mirza Muntasir</creatorcontrib><creatorcontrib>Al-Monsur, Abdullah</creatorcontrib><creatorcontrib>Ar-Rafi, Abrar Mohammad</creatorcontrib><creatorcontrib>Faisal, Fahim</creatorcontrib><creatorcontrib>Kabir, Mohammad Ridwan</creatorcontrib><title>Survival Prediction of Children Undergoing Hematopoietic Stem Cell Transplantation Using Different Machine Learning Classifiers by Performing Chi-Square Test and Hyperparameter Optimization: A Retrospective Analysis</title><title>Computational and mathematical methods in medicine</title><description>Bone marrow transplant (BMT) is an effective surgical treatment for bone marrow-related disorders. However, several associated risk factors can impair long-term survival after BMT. Machine learning (ML) technologies have been proven useful in survival prediction of BMT receivers along with the influences that limit their resilience. In this study, an efficient classification model predicting the survival of children undergoing BMT is presented using a public dataset. Several supervised ML methods were investigated in this regard with an 80-20 train-test split ratio. To ensure prediction with minimal time and resources, only the top 11 out of the 59 dataset features were considered using Chi-square feature selection method. Furthermore, hyperparameter optimization (HPO) using the grid search cross-validation (GSCV) technique was adopted to increase the accuracy of prediction. Four experiments were conducted utilizing a combination of default and optimized hyperparameters on the original and reduced datasets. Our investigation revealed that the top 11 features of HPO had the same prediction accuracy (94.73%) as the entire dataset with default parameters, however, requiring minimal time and resources. Hence, the proposed approach may aid in the development of a computer-aided diagnostic system with satisfactory accuracy and minimal computation time by utilizing medical data records.</description><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9Uk2P0zAUjBBILAs3foCPSBDWTuK64YBUZYEiFe2KthK36DV5bh9K7KztFJU_yt_B_dBKXLjYlmY8b-ZpkuS14O-FkPIm41l2U-alEPnkSXIlVDFNJ0pMnz6--Y_nyQvvf3IuhZLiKvmzHN2e9tCxe4ctNYGsYVazakdd69CwtWnRbS2ZLZtjD8EOljBQw5YBe1Zh17GVA-OHDkyA0_e1P7JvSWuMCoF9g2ZHBtkCwZkjVHXgPWlC59nmwO7Raev6E7KjdPkwgkO2Qh8YmJbNDwO6ARz0GNCxuyFQT79Poz6wGfuOwVk_YLS-RzYz0B08-ZfJMw2dx1eX-zpZf_60qubp4u7L12q2SJu8VCEtNUpdaimniKpoIVNZq9Um43yqFdfQNFxkuYiHQA1YFHKDalKikqhziSK_Tj6edYdx02PbxLwOunpw1IM71Bao_hcxtKu3dl-XMlNFXkSBNxcBZx_GmLnuyTdxrWDQjr6OjqIBWWRlpL47U5sY2DvUj2MEr48FqI8FqC8FiPS3Z3pcfgu_6P_sv_Irt_o</recordid><startdate>20220925</startdate><enddate>20220925</enddate><creator>Ratul, Ishrak Jahan</creator><creator>Wani, Ummay Habiba</creator><creator>Nishat, Mirza Muntasir</creator><creator>Al-Monsur, Abdullah</creator><creator>Ar-Rafi, Abrar Mohammad</creator><creator>Faisal, Fahim</creator><creator>Kabir, Mohammad Ridwan</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2894-3962</orcidid><orcidid>https://orcid.org/0000-0002-1799-078X</orcidid><orcidid>https://orcid.org/0000-0001-8446-7094</orcidid><orcidid>https://orcid.org/0000-0001-6124-4971</orcidid><orcidid>https://orcid.org/0000-0001-9835-6299</orcidid><orcidid>https://orcid.org/0000-0002-9631-1836</orcidid><orcidid>https://orcid.org/0000-0002-0853-0319</orcidid></search><sort><creationdate>20220925</creationdate><title>Survival Prediction of Children Undergoing Hematopoietic Stem Cell Transplantation Using Different Machine Learning Classifiers by Performing Chi-Square Test and Hyperparameter Optimization: A Retrospective Analysis</title><author>Ratul, Ishrak Jahan ; Wani, Ummay Habiba ; Nishat, Mirza Muntasir ; Al-Monsur, Abdullah ; Ar-Rafi, Abrar Mohammad ; Faisal, Fahim ; Kabir, Mohammad Ridwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-9fe5f9f558ee74da272df7b2008f70facc012310121efae445be769e75ef35e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratul, Ishrak Jahan</creatorcontrib><creatorcontrib>Wani, Ummay Habiba</creatorcontrib><creatorcontrib>Nishat, Mirza Muntasir</creatorcontrib><creatorcontrib>Al-Monsur, Abdullah</creatorcontrib><creatorcontrib>Ar-Rafi, Abrar Mohammad</creatorcontrib><creatorcontrib>Faisal, Fahim</creatorcontrib><creatorcontrib>Kabir, Mohammad Ridwan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratul, Ishrak Jahan</au><au>Wani, Ummay Habiba</au><au>Nishat, Mirza Muntasir</au><au>Al-Monsur, Abdullah</au><au>Ar-Rafi, Abrar Mohammad</au><au>Faisal, Fahim</au><au>Kabir, Mohammad Ridwan</au><au>Kaluri, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survival Prediction of Children Undergoing Hematopoietic Stem Cell Transplantation Using Different Machine Learning Classifiers by Performing Chi-Square Test and Hyperparameter Optimization: A Retrospective Analysis</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><date>2022-09-25</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Bone marrow transplant (BMT) is an effective surgical treatment for bone marrow-related disorders. However, several associated risk factors can impair long-term survival after BMT. Machine learning (ML) technologies have been proven useful in survival prediction of BMT receivers along with the influences that limit their resilience. In this study, an efficient classification model predicting the survival of children undergoing BMT is presented using a public dataset. Several supervised ML methods were investigated in this regard with an 80-20 train-test split ratio. To ensure prediction with minimal time and resources, only the top 11 out of the 59 dataset features were considered using Chi-square feature selection method. Furthermore, hyperparameter optimization (HPO) using the grid search cross-validation (GSCV) technique was adopted to increase the accuracy of prediction. Four experiments were conducted utilizing a combination of default and optimized hyperparameters on the original and reduced datasets. Our investigation revealed that the top 11 features of HPO had the same prediction accuracy (94.73%) as the entire dataset with default parameters, however, requiring minimal time and resources. Hence, the proposed approach may aid in the development of a computer-aided diagnostic system with satisfactory accuracy and minimal computation time by utilizing medical data records.</abstract><pub>Hindawi</pub><doi>10.1155/2022/9391136</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2894-3962</orcidid><orcidid>https://orcid.org/0000-0002-1799-078X</orcidid><orcidid>https://orcid.org/0000-0001-8446-7094</orcidid><orcidid>https://orcid.org/0000-0001-6124-4971</orcidid><orcidid>https://orcid.org/0000-0001-9835-6299</orcidid><orcidid>https://orcid.org/0000-0002-9631-1836</orcidid><orcidid>https://orcid.org/0000-0002-0853-0319</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2022-09, Vol.2022, p.1-14 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9527434 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
title | Survival Prediction of Children Undergoing Hematopoietic Stem Cell Transplantation Using Different Machine Learning Classifiers by Performing Chi-Square Test and Hyperparameter Optimization: A Retrospective Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T09%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survival%20Prediction%20of%20Children%20Undergoing%20Hematopoietic%20Stem%20Cell%20Transplantation%20Using%20Different%20Machine%20Learning%20Classifiers%20by%20Performing%20Chi-Square%20Test%20and%20Hyperparameter%20Optimization:%20A%20Retrospective%20Analysis&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Ratul,%20Ishrak%20Jahan&rft.date=2022-09-25&rft.volume=2022&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2022/9391136&rft_dat=%3Cproquest_pubme%3E2722315429%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722315429&rft_id=info:pmid/&rfr_iscdi=true |