AICAR transformylase/IMP cyclohydrolase (ATIC) is essential for de novo purine biosynthesis and infection by Cryptococcus neoformans
The fungal pathogen Cryptococcus neoformans is a leading cause of meningoencephalitis in the immunocompromised. As current antifungal treatments are toxic to the host, costly, limited in their efficacy, and associated with drug resistance, there is an urgent need to identify vulnerabilities in funga...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2022-10, Vol.298 (10), p.102453, Article 102453 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 102453 |
container_title | The Journal of biological chemistry |
container_volume | 298 |
creator | Wizrah, Maha S.I. Chua, Sheena M.H. Luo, Zhenyao Manik, Mohammad K. Pan, Mengqi Whyte, Jessica M.L. Robertson, Avril A.B. Kappler, Ulrike Kobe, Bostjan Fraser, James A. |
description | The fungal pathogen Cryptococcus neoformans is a leading cause of meningoencephalitis in the immunocompromised. As current antifungal treatments are toxic to the host, costly, limited in their efficacy, and associated with drug resistance, there is an urgent need to identify vulnerabilities in fungal physiology to accelerate antifungal discovery efforts. Rational drug design was pioneered in de novo purine biosynthesis as the end products of the pathway, ATP and GTP, are essential for replication, transcription, and energy metabolism, and the same rationale applies when considering the pathway as an antifungal target. Here, we describe the identification and characterization of C. neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/5′-inosine monophosphate cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final two enzymatic steps in the formation of the first purine base inosine monophosphate. We demonstrate that mutants lacking the ATIC-encoding ADE16 gene are adenine and histidine auxotrophs that are unable to establish an infection in a murine model of virulence. In addition, our assays employing recombinantly expressed and purified C. neoformans ATIC enzyme revealed Km values for its substrates AICAR and 5-formyl-AICAR are 8-fold and 20-fold higher, respectively, than in the human ortholog. Subsequently, we performed crystallographic studies that enabled the determination of the first fungal ATIC protein structure, revealing a key serine-to-tyrosine substitution in the active site, which has the potential to assist the design of fungus-specific inhibitors. Overall, our results validate ATIC as a promising antifungal drug target. |
doi_str_mv | 10.1016/j.jbc.2022.102453 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9525906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925822008961</els_id><sourcerecordid>36063996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-813cd1ebd5fb1ea365e22b552dd0aa83a283c9ffbe1cf2e14ec6876b45eb37103</originalsourceid><addsrcrecordid>eNp9UUtrGzEQFqGhdtz-gFyCjs1hHT1W610CAWOaxJDSUlLITegxG8usJSOtDXvvD6-Mk5BeossgzffQzIfQOSVTSmh1tZ6utZkywli-s1LwEzSmpOYFF_TpExoTwmjRMFGP0FlKa5JP2dDPaMQrUvGmqcbo73y5mP_GfVQ-tSFuhk4luFr--IXNYLqwGmwMhyf8bf64XFxilzCkBL53qsOZgC1gH_YBb3fRecDahTT4fgUpI5W32PkWTO-Cx3rAizhs-2CCMbuEPYSDYzb-gk5b1SX4-lIn6M_t98fFffHw8y5_76EwpaB9UVNuLAVtRaspKF4JYEwLwawlStVcsZqbpm01UNMyoCWYqp5VuhSg-YwSPkE3R93tTm_AmjxGVJ3cRrdRcZBBOfl_x7uVfA572QgmmryyCaJHARNDShHaNy4l8hCJXMsciTxEIo-RZM7Fe9M3xmsGGXB9BEAefe8gymQceAPWxbw6aYP7QP4fPpygiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AICAR transformylase/IMP cyclohydrolase (ATIC) is essential for de novo purine biosynthesis and infection by Cryptococcus neoformans</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wizrah, Maha S.I. ; Chua, Sheena M.H. ; Luo, Zhenyao ; Manik, Mohammad K. ; Pan, Mengqi ; Whyte, Jessica M.L. ; Robertson, Avril A.B. ; Kappler, Ulrike ; Kobe, Bostjan ; Fraser, James A.</creator><creatorcontrib>Wizrah, Maha S.I. ; Chua, Sheena M.H. ; Luo, Zhenyao ; Manik, Mohammad K. ; Pan, Mengqi ; Whyte, Jessica M.L. ; Robertson, Avril A.B. ; Kappler, Ulrike ; Kobe, Bostjan ; Fraser, James A.</creatorcontrib><description>The fungal pathogen Cryptococcus neoformans is a leading cause of meningoencephalitis in the immunocompromised. As current antifungal treatments are toxic to the host, costly, limited in their efficacy, and associated with drug resistance, there is an urgent need to identify vulnerabilities in fungal physiology to accelerate antifungal discovery efforts. Rational drug design was pioneered in de novo purine biosynthesis as the end products of the pathway, ATP and GTP, are essential for replication, transcription, and energy metabolism, and the same rationale applies when considering the pathway as an antifungal target. Here, we describe the identification and characterization of C. neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/5′-inosine monophosphate cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final two enzymatic steps in the formation of the first purine base inosine monophosphate. We demonstrate that mutants lacking the ATIC-encoding ADE16 gene are adenine and histidine auxotrophs that are unable to establish an infection in a murine model of virulence. In addition, our assays employing recombinantly expressed and purified C. neoformans ATIC enzyme revealed Km values for its substrates AICAR and 5-formyl-AICAR are 8-fold and 20-fold higher, respectively, than in the human ortholog. Subsequently, we performed crystallographic studies that enabled the determination of the first fungal ATIC protein structure, revealing a key serine-to-tyrosine substitution in the active site, which has the potential to assist the design of fungus-specific inhibitors. Overall, our results validate ATIC as a promising antifungal drug target.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2022.102453</identifier><identifier>PMID: 36063996</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antifungal Agents ; bifunctional enzyme ; Cryptococcosis - metabolism ; Cryptococcus neoformans ; Cryptococcus neoformans - enzymology ; Cryptococcus neoformans - genetics ; Drug Discovery ; enzyme kinetics ; fungi ; Humans ; Hydroxymethyl and Formyl Transferases ; Inosine Monophosphate ; Mice ; microbial pathogenesis ; molecular genetics ; nucleoside/nucleotide metabolism ; Phosphoribosylaminoimidazolecarboxamide Formyltransferase - chemistry ; Phosphoribosylaminoimidazolecarboxamide Formyltransferase - genetics ; Phosphoribosylaminoimidazolecarboxamide Formyltransferase - metabolism ; purine de novo biosynthesis ; Purines ; X-ray crystallography</subject><ispartof>The Journal of biological chemistry, 2022-10, Vol.298 (10), p.102453, Article 102453</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-813cd1ebd5fb1ea365e22b552dd0aa83a283c9ffbe1cf2e14ec6876b45eb37103</citedby><cites>FETCH-LOGICAL-c451t-813cd1ebd5fb1ea365e22b552dd0aa83a283c9ffbe1cf2e14ec6876b45eb37103</cites><orcidid>0000-0002-9956-0942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525906/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525906/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36063996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wizrah, Maha S.I.</creatorcontrib><creatorcontrib>Chua, Sheena M.H.</creatorcontrib><creatorcontrib>Luo, Zhenyao</creatorcontrib><creatorcontrib>Manik, Mohammad K.</creatorcontrib><creatorcontrib>Pan, Mengqi</creatorcontrib><creatorcontrib>Whyte, Jessica M.L.</creatorcontrib><creatorcontrib>Robertson, Avril A.B.</creatorcontrib><creatorcontrib>Kappler, Ulrike</creatorcontrib><creatorcontrib>Kobe, Bostjan</creatorcontrib><creatorcontrib>Fraser, James A.</creatorcontrib><title>AICAR transformylase/IMP cyclohydrolase (ATIC) is essential for de novo purine biosynthesis and infection by Cryptococcus neoformans</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The fungal pathogen Cryptococcus neoformans is a leading cause of meningoencephalitis in the immunocompromised. As current antifungal treatments are toxic to the host, costly, limited in their efficacy, and associated with drug resistance, there is an urgent need to identify vulnerabilities in fungal physiology to accelerate antifungal discovery efforts. Rational drug design was pioneered in de novo purine biosynthesis as the end products of the pathway, ATP and GTP, are essential for replication, transcription, and energy metabolism, and the same rationale applies when considering the pathway as an antifungal target. Here, we describe the identification and characterization of C. neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/5′-inosine monophosphate cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final two enzymatic steps in the formation of the first purine base inosine monophosphate. We demonstrate that mutants lacking the ATIC-encoding ADE16 gene are adenine and histidine auxotrophs that are unable to establish an infection in a murine model of virulence. In addition, our assays employing recombinantly expressed and purified C. neoformans ATIC enzyme revealed Km values for its substrates AICAR and 5-formyl-AICAR are 8-fold and 20-fold higher, respectively, than in the human ortholog. Subsequently, we performed crystallographic studies that enabled the determination of the first fungal ATIC protein structure, revealing a key serine-to-tyrosine substitution in the active site, which has the potential to assist the design of fungus-specific inhibitors. Overall, our results validate ATIC as a promising antifungal drug target.</description><subject>Animals</subject><subject>Antifungal Agents</subject><subject>bifunctional enzyme</subject><subject>Cryptococcosis - metabolism</subject><subject>Cryptococcus neoformans</subject><subject>Cryptococcus neoformans - enzymology</subject><subject>Cryptococcus neoformans - genetics</subject><subject>Drug Discovery</subject><subject>enzyme kinetics</subject><subject>fungi</subject><subject>Humans</subject><subject>Hydroxymethyl and Formyl Transferases</subject><subject>Inosine Monophosphate</subject><subject>Mice</subject><subject>microbial pathogenesis</subject><subject>molecular genetics</subject><subject>nucleoside/nucleotide metabolism</subject><subject>Phosphoribosylaminoimidazolecarboxamide Formyltransferase - chemistry</subject><subject>Phosphoribosylaminoimidazolecarboxamide Formyltransferase - genetics</subject><subject>Phosphoribosylaminoimidazolecarboxamide Formyltransferase - metabolism</subject><subject>purine de novo biosynthesis</subject><subject>Purines</subject><subject>X-ray crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UUtrGzEQFqGhdtz-gFyCjs1hHT1W610CAWOaxJDSUlLITegxG8usJSOtDXvvD6-Mk5BeossgzffQzIfQOSVTSmh1tZ6utZkywli-s1LwEzSmpOYFF_TpExoTwmjRMFGP0FlKa5JP2dDPaMQrUvGmqcbo73y5mP_GfVQ-tSFuhk4luFr--IXNYLqwGmwMhyf8bf64XFxilzCkBL53qsOZgC1gH_YBb3fRecDahTT4fgUpI5W32PkWTO-Cx3rAizhs-2CCMbuEPYSDYzb-gk5b1SX4-lIn6M_t98fFffHw8y5_76EwpaB9UVNuLAVtRaspKF4JYEwLwawlStVcsZqbpm01UNMyoCWYqp5VuhSg-YwSPkE3R93tTm_AmjxGVJ3cRrdRcZBBOfl_x7uVfA572QgmmryyCaJHARNDShHaNy4l8hCJXMsciTxEIo-RZM7Fe9M3xmsGGXB9BEAefe8gymQceAPWxbw6aYP7QP4fPpygiw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Wizrah, Maha S.I.</creator><creator>Chua, Sheena M.H.</creator><creator>Luo, Zhenyao</creator><creator>Manik, Mohammad K.</creator><creator>Pan, Mengqi</creator><creator>Whyte, Jessica M.L.</creator><creator>Robertson, Avril A.B.</creator><creator>Kappler, Ulrike</creator><creator>Kobe, Bostjan</creator><creator>Fraser, James A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9956-0942</orcidid></search><sort><creationdate>20221001</creationdate><title>AICAR transformylase/IMP cyclohydrolase (ATIC) is essential for de novo purine biosynthesis and infection by Cryptococcus neoformans</title><author>Wizrah, Maha S.I. ; Chua, Sheena M.H. ; Luo, Zhenyao ; Manik, Mohammad K. ; Pan, Mengqi ; Whyte, Jessica M.L. ; Robertson, Avril A.B. ; Kappler, Ulrike ; Kobe, Bostjan ; Fraser, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-813cd1ebd5fb1ea365e22b552dd0aa83a283c9ffbe1cf2e14ec6876b45eb37103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Antifungal Agents</topic><topic>bifunctional enzyme</topic><topic>Cryptococcosis - metabolism</topic><topic>Cryptococcus neoformans</topic><topic>Cryptococcus neoformans - enzymology</topic><topic>Cryptococcus neoformans - genetics</topic><topic>Drug Discovery</topic><topic>enzyme kinetics</topic><topic>fungi</topic><topic>Humans</topic><topic>Hydroxymethyl and Formyl Transferases</topic><topic>Inosine Monophosphate</topic><topic>Mice</topic><topic>microbial pathogenesis</topic><topic>molecular genetics</topic><topic>nucleoside/nucleotide metabolism</topic><topic>Phosphoribosylaminoimidazolecarboxamide Formyltransferase - chemistry</topic><topic>Phosphoribosylaminoimidazolecarboxamide Formyltransferase - genetics</topic><topic>Phosphoribosylaminoimidazolecarboxamide Formyltransferase - metabolism</topic><topic>purine de novo biosynthesis</topic><topic>Purines</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wizrah, Maha S.I.</creatorcontrib><creatorcontrib>Chua, Sheena M.H.</creatorcontrib><creatorcontrib>Luo, Zhenyao</creatorcontrib><creatorcontrib>Manik, Mohammad K.</creatorcontrib><creatorcontrib>Pan, Mengqi</creatorcontrib><creatorcontrib>Whyte, Jessica M.L.</creatorcontrib><creatorcontrib>Robertson, Avril A.B.</creatorcontrib><creatorcontrib>Kappler, Ulrike</creatorcontrib><creatorcontrib>Kobe, Bostjan</creatorcontrib><creatorcontrib>Fraser, James A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wizrah, Maha S.I.</au><au>Chua, Sheena M.H.</au><au>Luo, Zhenyao</au><au>Manik, Mohammad K.</au><au>Pan, Mengqi</au><au>Whyte, Jessica M.L.</au><au>Robertson, Avril A.B.</au><au>Kappler, Ulrike</au><au>Kobe, Bostjan</au><au>Fraser, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AICAR transformylase/IMP cyclohydrolase (ATIC) is essential for de novo purine biosynthesis and infection by Cryptococcus neoformans</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>298</volume><issue>10</issue><spage>102453</spage><pages>102453-</pages><artnum>102453</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The fungal pathogen Cryptococcus neoformans is a leading cause of meningoencephalitis in the immunocompromised. As current antifungal treatments are toxic to the host, costly, limited in their efficacy, and associated with drug resistance, there is an urgent need to identify vulnerabilities in fungal physiology to accelerate antifungal discovery efforts. Rational drug design was pioneered in de novo purine biosynthesis as the end products of the pathway, ATP and GTP, are essential for replication, transcription, and energy metabolism, and the same rationale applies when considering the pathway as an antifungal target. Here, we describe the identification and characterization of C. neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/5′-inosine monophosphate cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final two enzymatic steps in the formation of the first purine base inosine monophosphate. We demonstrate that mutants lacking the ATIC-encoding ADE16 gene are adenine and histidine auxotrophs that are unable to establish an infection in a murine model of virulence. In addition, our assays employing recombinantly expressed and purified C. neoformans ATIC enzyme revealed Km values for its substrates AICAR and 5-formyl-AICAR are 8-fold and 20-fold higher, respectively, than in the human ortholog. Subsequently, we performed crystallographic studies that enabled the determination of the first fungal ATIC protein structure, revealing a key serine-to-tyrosine substitution in the active site, which has the potential to assist the design of fungus-specific inhibitors. Overall, our results validate ATIC as a promising antifungal drug target.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36063996</pmid><doi>10.1016/j.jbc.2022.102453</doi><orcidid>https://orcid.org/0000-0002-9956-0942</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2022-10, Vol.298 (10), p.102453, Article 102453 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9525906 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Antifungal Agents bifunctional enzyme Cryptococcosis - metabolism Cryptococcus neoformans Cryptococcus neoformans - enzymology Cryptococcus neoformans - genetics Drug Discovery enzyme kinetics fungi Humans Hydroxymethyl and Formyl Transferases Inosine Monophosphate Mice microbial pathogenesis molecular genetics nucleoside/nucleotide metabolism Phosphoribosylaminoimidazolecarboxamide Formyltransferase - chemistry Phosphoribosylaminoimidazolecarboxamide Formyltransferase - genetics Phosphoribosylaminoimidazolecarboxamide Formyltransferase - metabolism purine de novo biosynthesis Purines X-ray crystallography |
title | AICAR transformylase/IMP cyclohydrolase (ATIC) is essential for de novo purine biosynthesis and infection by Cryptococcus neoformans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AICAR%20transformylase/IMP%20cyclohydrolase%20(ATIC)%20is%20essential%20for%20de%20novo%20purine%20biosynthesis%20and%20infection%20by%20Cryptococcus%20neoformans&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Wizrah,%20Maha%20S.I.&rft.date=2022-10-01&rft.volume=298&rft.issue=10&rft.spage=102453&rft.pages=102453-&rft.artnum=102453&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2022.102453&rft_dat=%3Cpubmed_cross%3E36063996%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36063996&rft_els_id=S0021925822008961&rfr_iscdi=true |