Modulating the Energy Band Structure of the Mg-Doped Sr0.5Pr0.5Fe0.2Mg0.2Ti0.6O3−δ Electrolyte with Boosted Ionic Conductivity and Electrochemical Performance for Solid Oxide Fuel Cells

Achieving fast ionic conductivity in the electrolyte at low operating temperatures while maintaining the stable and high electrochemical performance of solid oxide fuel cells (SOFCs) is challenging. Herein, we propose a new type of electrolyte based on perovskite Sr0.5Pr0.5Fe0.4Ti0.6O3−δ for low-tem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-09, Vol.14 (38), p.43067-43084
Hauptverfasser: Rauf, Sajid, Hanif, Muhammad Bilal, Mushtaq, Naveed, Tayyab, Zuhra, Ali, Nasir, Shah, M. A. K. Yousaf, Motola, Martin, Saleem, Adil, Asghar, Muhammad Imran, Iqbal, Rashid, Yang, Changping, Xu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43084
container_issue 38
container_start_page 43067
container_title ACS applied materials & interfaces
container_volume 14
creator Rauf, Sajid
Hanif, Muhammad Bilal
Mushtaq, Naveed
Tayyab, Zuhra
Ali, Nasir
Shah, M. A. K. Yousaf
Motola, Martin
Saleem, Adil
Asghar, Muhammad Imran
Iqbal, Rashid
Yang, Changping
Xu, Wei
description Achieving fast ionic conductivity in the electrolyte at low operating temperatures while maintaining the stable and high electrochemical performance of solid oxide fuel cells (SOFCs) is challenging. Herein, we propose a new type of electrolyte based on perovskite Sr0.5Pr0.5Fe0.4Ti0.6O3−δ for low-temperature SOFCs. The ionic conducting behavior of the electrolyte is modulated using Mg doping, and three different Sr0.5Pr0.5Fe0.4–x Mg x Ti0.6O3−δ (x = 0, 0.1, and 0.2) samples are prepared. The synthesized Sr0.5Pr0.5Fe0.2Mg0.2Ti0.6O3−δ (SPFMg0.2T) proved to be an optimal electrolyte material, exhibiting a high ionic conductivity of 0.133 S cm–1 along with an attractive fuel cell performance of 0.83 W cm–2 at 520 °C. We proved that a proper amount of Mg doping (20%) contributes to the creation of an adequate number of oxygen vacancies, which facilitates the fast transport of the oxide ions. Considering its rapid oxide ion transport, the prepared SPFMg0.2T presented heterostructure characteristics in the form of an insulating core and superionic conduction via surface layers. In addition, the effect of Mg doping is intensively investigated to tune the band structure for the transport of charged species. Meanwhile, the concept of energy band alignment is employed to interpret the working principle of the proposed electrolyte. Moreover, the density functional theory is utilized to determine the perovskite structures of SrTiO3−δ and Sr0.5Pr0.5Fe0.4–x Mg x Ti0.6O3−δ (x = 0, 0.1, and 0.2) and their electronic states. Further, the SPFMg0.2T with 20% Mg doping exhibited low dissociation energy, which ensures the fast and high ionic conduction in the electrolyte. Inclusively, Sr0.5Pr0.5Fe0.4Ti0.6O3−δ is a promising electrolyte for SOFCs, and its performance can be efficiently boosted via Mg doping to modulate the energy band structure.
doi_str_mv 10.1021/acsami.2c06565
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9523621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715792341</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2335-8e4d6a8959751109b4f6491b14f9b3de3a018350542cce502b88dfb8e5a71eee3</originalsourceid><addsrcrecordid>eNpVUctu1DAUjRAVLYUtay8RUoKfmWSDRIcZqNTRVGpZW45zk3Hl2IPtFOYPWPMtLPsN_Qi-hExnhMTm3iOdc8_V0cmyNwQXBFPyXumoBlNQjUtRimfZGak5zysq6PN_mPPT7GWMdxiXjGLxIjtlJaGEc36WPax8O1qVjOtR2gBaOAj9Dl0o16KbFEadxgDId0_kqs8_-S1MTMCFuN6PJeCCrvpp3BpclGv25-evx99oYUGn4O0uAfpu0gZdeB_TdHnpndFo7l07WZt7k3Zo_-qo1xsYjFYWXUPofBiU04AmgG68NS1a_zAtoOUIFs3B2vgqO-mUjfD6uM-zr8vF7fxLfrX-fDn_eJUrypjIK-Btqapa1DNBCK4b3pW8Jg3hXd2wFpjCpGICC061BoFpU1Vt11Qg1IwAADvPPhx8t2MzQKvBpaCs3AYzqLCTXhn5P-PMRvb-XtaCspKSyeDt0SD4byPEJAcT9RRBOfBjlHRGxKymjO-l7w7SqVl558fgpmSSYLmvWx7qlse62V-6QqAq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715792341</pqid></control><display><type>article</type><title>Modulating the Energy Band Structure of the Mg-Doped Sr0.5Pr0.5Fe0.2Mg0.2Ti0.6O3−δ Electrolyte with Boosted Ionic Conductivity and Electrochemical Performance for Solid Oxide Fuel Cells</title><source>American Chemical Society Journals</source><creator>Rauf, Sajid ; Hanif, Muhammad Bilal ; Mushtaq, Naveed ; Tayyab, Zuhra ; Ali, Nasir ; Shah, M. A. K. Yousaf ; Motola, Martin ; Saleem, Adil ; Asghar, Muhammad Imran ; Iqbal, Rashid ; Yang, Changping ; Xu, Wei</creator><creatorcontrib>Rauf, Sajid ; Hanif, Muhammad Bilal ; Mushtaq, Naveed ; Tayyab, Zuhra ; Ali, Nasir ; Shah, M. A. K. Yousaf ; Motola, Martin ; Saleem, Adil ; Asghar, Muhammad Imran ; Iqbal, Rashid ; Yang, Changping ; Xu, Wei</creatorcontrib><description>Achieving fast ionic conductivity in the electrolyte at low operating temperatures while maintaining the stable and high electrochemical performance of solid oxide fuel cells (SOFCs) is challenging. Herein, we propose a new type of electrolyte based on perovskite Sr0.5Pr0.5Fe0.4Ti0.6O3−δ for low-temperature SOFCs. The ionic conducting behavior of the electrolyte is modulated using Mg doping, and three different Sr0.5Pr0.5Fe0.4–x Mg x Ti0.6O3−δ (x = 0, 0.1, and 0.2) samples are prepared. The synthesized Sr0.5Pr0.5Fe0.2Mg0.2Ti0.6O3−δ (SPFMg0.2T) proved to be an optimal electrolyte material, exhibiting a high ionic conductivity of 0.133 S cm–1 along with an attractive fuel cell performance of 0.83 W cm–2 at 520 °C. We proved that a proper amount of Mg doping (20%) contributes to the creation of an adequate number of oxygen vacancies, which facilitates the fast transport of the oxide ions. Considering its rapid oxide ion transport, the prepared SPFMg0.2T presented heterostructure characteristics in the form of an insulating core and superionic conduction via surface layers. In addition, the effect of Mg doping is intensively investigated to tune the band structure for the transport of charged species. Meanwhile, the concept of energy band alignment is employed to interpret the working principle of the proposed electrolyte. Moreover, the density functional theory is utilized to determine the perovskite structures of SrTiO3−δ and Sr0.5Pr0.5Fe0.4–x Mg x Ti0.6O3−δ (x = 0, 0.1, and 0.2) and their electronic states. Further, the SPFMg0.2T with 20% Mg doping exhibited low dissociation energy, which ensures the fast and high ionic conduction in the electrolyte. Inclusively, Sr0.5Pr0.5Fe0.4Ti0.6O3−δ is a promising electrolyte for SOFCs, and its performance can be efficiently boosted via Mg doping to modulate the energy band structure.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c06565</identifier><identifier>PMID: 36121444</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-09, Vol.14 (38), p.43067-43084</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1081-9090 ; 0000-0001-7394-9944 ; 0000-0001-5959-0429 ; 0000-0003-3559-0955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c06565$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c06565$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Rauf, Sajid</creatorcontrib><creatorcontrib>Hanif, Muhammad Bilal</creatorcontrib><creatorcontrib>Mushtaq, Naveed</creatorcontrib><creatorcontrib>Tayyab, Zuhra</creatorcontrib><creatorcontrib>Ali, Nasir</creatorcontrib><creatorcontrib>Shah, M. A. K. Yousaf</creatorcontrib><creatorcontrib>Motola, Martin</creatorcontrib><creatorcontrib>Saleem, Adil</creatorcontrib><creatorcontrib>Asghar, Muhammad Imran</creatorcontrib><creatorcontrib>Iqbal, Rashid</creatorcontrib><creatorcontrib>Yang, Changping</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><title>Modulating the Energy Band Structure of the Mg-Doped Sr0.5Pr0.5Fe0.2Mg0.2Ti0.6O3−δ Electrolyte with Boosted Ionic Conductivity and Electrochemical Performance for Solid Oxide Fuel Cells</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Achieving fast ionic conductivity in the electrolyte at low operating temperatures while maintaining the stable and high electrochemical performance of solid oxide fuel cells (SOFCs) is challenging. Herein, we propose a new type of electrolyte based on perovskite Sr0.5Pr0.5Fe0.4Ti0.6O3−δ for low-temperature SOFCs. The ionic conducting behavior of the electrolyte is modulated using Mg doping, and three different Sr0.5Pr0.5Fe0.4–x Mg x Ti0.6O3−δ (x = 0, 0.1, and 0.2) samples are prepared. The synthesized Sr0.5Pr0.5Fe0.2Mg0.2Ti0.6O3−δ (SPFMg0.2T) proved to be an optimal electrolyte material, exhibiting a high ionic conductivity of 0.133 S cm–1 along with an attractive fuel cell performance of 0.83 W cm–2 at 520 °C. We proved that a proper amount of Mg doping (20%) contributes to the creation of an adequate number of oxygen vacancies, which facilitates the fast transport of the oxide ions. Considering its rapid oxide ion transport, the prepared SPFMg0.2T presented heterostructure characteristics in the form of an insulating core and superionic conduction via surface layers. In addition, the effect of Mg doping is intensively investigated to tune the band structure for the transport of charged species. Meanwhile, the concept of energy band alignment is employed to interpret the working principle of the proposed electrolyte. Moreover, the density functional theory is utilized to determine the perovskite structures of SrTiO3−δ and Sr0.5Pr0.5Fe0.4–x Mg x Ti0.6O3−δ (x = 0, 0.1, and 0.2) and their electronic states. Further, the SPFMg0.2T with 20% Mg doping exhibited low dissociation energy, which ensures the fast and high ionic conduction in the electrolyte. Inclusively, Sr0.5Pr0.5Fe0.4Ti0.6O3−δ is a promising electrolyte for SOFCs, and its performance can be efficiently boosted via Mg doping to modulate the energy band structure.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUctu1DAUjRAVLYUtay8RUoKfmWSDRIcZqNTRVGpZW45zk3Hl2IPtFOYPWPMtLPsN_Qi-hExnhMTm3iOdc8_V0cmyNwQXBFPyXumoBlNQjUtRimfZGak5zysq6PN_mPPT7GWMdxiXjGLxIjtlJaGEc36WPax8O1qVjOtR2gBaOAj9Dl0o16KbFEadxgDId0_kqs8_-S1MTMCFuN6PJeCCrvpp3BpclGv25-evx99oYUGn4O0uAfpu0gZdeB_TdHnpndFo7l07WZt7k3Zo_-qo1xsYjFYWXUPofBiU04AmgG68NS1a_zAtoOUIFs3B2vgqO-mUjfD6uM-zr8vF7fxLfrX-fDn_eJUrypjIK-Btqapa1DNBCK4b3pW8Jg3hXd2wFpjCpGICC061BoFpU1Vt11Qg1IwAADvPPhx8t2MzQKvBpaCs3AYzqLCTXhn5P-PMRvb-XtaCspKSyeDt0SD4byPEJAcT9RRBOfBjlHRGxKymjO-l7w7SqVl558fgpmSSYLmvWx7qlse62V-6QqAq</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>Rauf, Sajid</creator><creator>Hanif, Muhammad Bilal</creator><creator>Mushtaq, Naveed</creator><creator>Tayyab, Zuhra</creator><creator>Ali, Nasir</creator><creator>Shah, M. A. K. Yousaf</creator><creator>Motola, Martin</creator><creator>Saleem, Adil</creator><creator>Asghar, Muhammad Imran</creator><creator>Iqbal, Rashid</creator><creator>Yang, Changping</creator><creator>Xu, Wei</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1081-9090</orcidid><orcidid>https://orcid.org/0000-0001-7394-9944</orcidid><orcidid>https://orcid.org/0000-0001-5959-0429</orcidid><orcidid>https://orcid.org/0000-0003-3559-0955</orcidid></search><sort><creationdate>20220928</creationdate><title>Modulating the Energy Band Structure of the Mg-Doped Sr0.5Pr0.5Fe0.2Mg0.2Ti0.6O3−δ Electrolyte with Boosted Ionic Conductivity and Electrochemical Performance for Solid Oxide Fuel Cells</title><author>Rauf, Sajid ; Hanif, Muhammad Bilal ; Mushtaq, Naveed ; Tayyab, Zuhra ; Ali, Nasir ; Shah, M. A. K. Yousaf ; Motola, Martin ; Saleem, Adil ; Asghar, Muhammad Imran ; Iqbal, Rashid ; Yang, Changping ; Xu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2335-8e4d6a8959751109b4f6491b14f9b3de3a018350542cce502b88dfb8e5a71eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rauf, Sajid</creatorcontrib><creatorcontrib>Hanif, Muhammad Bilal</creatorcontrib><creatorcontrib>Mushtaq, Naveed</creatorcontrib><creatorcontrib>Tayyab, Zuhra</creatorcontrib><creatorcontrib>Ali, Nasir</creatorcontrib><creatorcontrib>Shah, M. A. K. Yousaf</creatorcontrib><creatorcontrib>Motola, Martin</creatorcontrib><creatorcontrib>Saleem, Adil</creatorcontrib><creatorcontrib>Asghar, Muhammad Imran</creatorcontrib><creatorcontrib>Iqbal, Rashid</creatorcontrib><creatorcontrib>Yang, Changping</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rauf, Sajid</au><au>Hanif, Muhammad Bilal</au><au>Mushtaq, Naveed</au><au>Tayyab, Zuhra</au><au>Ali, Nasir</au><au>Shah, M. A. K. Yousaf</au><au>Motola, Martin</au><au>Saleem, Adil</au><au>Asghar, Muhammad Imran</au><au>Iqbal, Rashid</au><au>Yang, Changping</au><au>Xu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulating the Energy Band Structure of the Mg-Doped Sr0.5Pr0.5Fe0.2Mg0.2Ti0.6O3−δ Electrolyte with Boosted Ionic Conductivity and Electrochemical Performance for Solid Oxide Fuel Cells</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-09-28</date><risdate>2022</risdate><volume>14</volume><issue>38</issue><spage>43067</spage><epage>43084</epage><pages>43067-43084</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Achieving fast ionic conductivity in the electrolyte at low operating temperatures while maintaining the stable and high electrochemical performance of solid oxide fuel cells (SOFCs) is challenging. Herein, we propose a new type of electrolyte based on perovskite Sr0.5Pr0.5Fe0.4Ti0.6O3−δ for low-temperature SOFCs. The ionic conducting behavior of the electrolyte is modulated using Mg doping, and three different Sr0.5Pr0.5Fe0.4–x Mg x Ti0.6O3−δ (x = 0, 0.1, and 0.2) samples are prepared. The synthesized Sr0.5Pr0.5Fe0.2Mg0.2Ti0.6O3−δ (SPFMg0.2T) proved to be an optimal electrolyte material, exhibiting a high ionic conductivity of 0.133 S cm–1 along with an attractive fuel cell performance of 0.83 W cm–2 at 520 °C. We proved that a proper amount of Mg doping (20%) contributes to the creation of an adequate number of oxygen vacancies, which facilitates the fast transport of the oxide ions. Considering its rapid oxide ion transport, the prepared SPFMg0.2T presented heterostructure characteristics in the form of an insulating core and superionic conduction via surface layers. In addition, the effect of Mg doping is intensively investigated to tune the band structure for the transport of charged species. Meanwhile, the concept of energy band alignment is employed to interpret the working principle of the proposed electrolyte. Moreover, the density functional theory is utilized to determine the perovskite structures of SrTiO3−δ and Sr0.5Pr0.5Fe0.4–x Mg x Ti0.6O3−δ (x = 0, 0.1, and 0.2) and their electronic states. Further, the SPFMg0.2T with 20% Mg doping exhibited low dissociation energy, which ensures the fast and high ionic conduction in the electrolyte. Inclusively, Sr0.5Pr0.5Fe0.4Ti0.6O3−δ is a promising electrolyte for SOFCs, and its performance can be efficiently boosted via Mg doping to modulate the energy band structure.</abstract><pub>American Chemical Society</pub><pmid>36121444</pmid><doi>10.1021/acsami.2c06565</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1081-9090</orcidid><orcidid>https://orcid.org/0000-0001-7394-9944</orcidid><orcidid>https://orcid.org/0000-0001-5959-0429</orcidid><orcidid>https://orcid.org/0000-0003-3559-0955</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-09, Vol.14 (38), p.43067-43084
issn 1944-8244
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9523621
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title Modulating the Energy Band Structure of the Mg-Doped Sr0.5Pr0.5Fe0.2Mg0.2Ti0.6O3−δ Electrolyte with Boosted Ionic Conductivity and Electrochemical Performance for Solid Oxide Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulating%20the%20Energy%20Band%20Structure%20of%20the%20Mg-Doped%20Sr0.5Pr0.5Fe0.2Mg0.2Ti0.6O3%E2%88%92%CE%B4%20Electrolyte%20with%20Boosted%20Ionic%20Conductivity%20and%20Electrochemical%20Performance%20for%20Solid%20Oxide%20Fuel%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Rauf,%20Sajid&rft.date=2022-09-28&rft.volume=14&rft.issue=38&rft.spage=43067&rft.epage=43084&rft.pages=43067-43084&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c06565&rft_dat=%3Cproquest_pubme%3E2715792341%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715792341&rft_id=info:pmid/36121444&rfr_iscdi=true