Scalable Microfabrication of Multi-Emitter Arrays in Silicon for a Compact Microfluidic Electrospray Propulsion System
The recent proliferation of SmallSats and their use in increasingly demanding applications require the development of onboard electric propulsion compatible with the power, mass, and volume constraints of these spacecraft. Electrospray propulsion is a promising technology for SmallSats due to its un...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-09, Vol.14 (38), p.43527-43537 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43537 |
---|---|
container_issue | 38 |
container_start_page | 43527 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Cisquella-Serra, Albert Galobardes-Esteban, Marc Gamero-Castaño, Manuel |
description | The recent proliferation of SmallSats and their use in increasingly demanding applications require the development of onboard electric propulsion compatible with the power, mass, and volume constraints of these spacecraft. Electrospray propulsion is a promising technology for SmallSats due to its unique high efficiency and scalability across the wide power range of these platforms, for example, from a few watts available in a CubeSat to a few hundred watts in a MiniSat. The implementation of electrospray propulsion requires the use of microfabrication techniques to create compact arrays of thousands of electrospray emitters. This article demonstrates the microfabrication of multi-emitter electrospray sources of a scalable size for electrospray propulsion. In particular, a microfabrication and assembly process is developed and demonstrated by fabricating sources with arrays of 1, 64, and 256 emitters. The electrospray sources are tested in a relevant environment for space propulsion (inside a vacuum chamber), exhibiting excellent propulsive performance (e.g., absence of beam impingement in the extractor electrode, absence of hysteresis in the beam current versus propellant flow rate characteristic, proper operation in the cone-jet electrospraying mode, etc.) and nearly coincident output per emitter. Several design elements contribute to this performance: the even distribution of the propellant among all emitters made possible by the implementation of a network of microfluidic channels in the backside of the emitter array; the small dead volume of the network of microfluidic channels; the accurate alignment between the emitters and extractor orifices; and the use of a pipe-flow configuration to drive the propellant through closed conduits, which protects the propellant. |
doi_str_mv | 10.1021/acsami.2c12716 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9523613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715443926</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-72a3434b06d37283c45d9eaed8dcea1a798b71efb33a7b6591dc7130b1ad55a13</originalsourceid><addsrcrecordid>eNp1kUtLxDAUhYMozvjYus5ShI55tZ1uhGEYHzCiMLoOt2mqkbSpSSrMvzcyg-DC1Q0353wXzkHogpIZJYxegwrQmRlTlJW0OEBTWgmRzVnODn_fQkzQSQgfhBSckfwYTXhBKSOUTdHXRoGF2mr8aJR3LdTeKIjG9di1-HG00WSrzsSoPV54D9uATY83xhqVJK3zGPDSdQOouCfY0TRG4ZXVKnoXhuTBz94Now0_1M02RN2doaMWbNDn-3mKXm9XL8v7bP1097BcrDMQhMWsZMAFFzUpGl6yOVcibyoNupk3SgOFsprXJdVtzTmUdZFXtFEl5aSm0OQ5UH6KbnbcYaw7nUx99GDl4E0HfisdGPn3pzfv8s19ySpnKSSeAJd7gHefow5RdiYobS302o1BptRzIXjFiiSd7aQphRC8bn_PUCJ_ypK7suS-rGS42hnSXn640fcpiv_E3-s2mLo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715443926</pqid></control><display><type>article</type><title>Scalable Microfabrication of Multi-Emitter Arrays in Silicon for a Compact Microfluidic Electrospray Propulsion System</title><source>American Chemical Society Journals</source><creator>Cisquella-Serra, Albert ; Galobardes-Esteban, Marc ; Gamero-Castaño, Manuel</creator><creatorcontrib>Cisquella-Serra, Albert ; Galobardes-Esteban, Marc ; Gamero-Castaño, Manuel</creatorcontrib><description>The recent proliferation of SmallSats and their use in increasingly demanding applications require the development of onboard electric propulsion compatible with the power, mass, and volume constraints of these spacecraft. Electrospray propulsion is a promising technology for SmallSats due to its unique high efficiency and scalability across the wide power range of these platforms, for example, from a few watts available in a CubeSat to a few hundred watts in a MiniSat. The implementation of electrospray propulsion requires the use of microfabrication techniques to create compact arrays of thousands of electrospray emitters. This article demonstrates the microfabrication of multi-emitter electrospray sources of a scalable size for electrospray propulsion. In particular, a microfabrication and assembly process is developed and demonstrated by fabricating sources with arrays of 1, 64, and 256 emitters. The electrospray sources are tested in a relevant environment for space propulsion (inside a vacuum chamber), exhibiting excellent propulsive performance (e.g., absence of beam impingement in the extractor electrode, absence of hysteresis in the beam current versus propellant flow rate characteristic, proper operation in the cone-jet electrospraying mode, etc.) and nearly coincident output per emitter. Several design elements contribute to this performance: the even distribution of the propellant among all emitters made possible by the implementation of a network of microfluidic channels in the backside of the emitter array; the small dead volume of the network of microfluidic channels; the accurate alignment between the emitters and extractor orifices; and the use of a pipe-flow configuration to drive the propellant through closed conduits, which protects the propellant.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c12716</identifier><identifier>PMID: 36112012</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials & interfaces, 2022-09, Vol.14 (38), p.43527-43537</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-72a3434b06d37283c45d9eaed8dcea1a798b71efb33a7b6591dc7130b1ad55a13</citedby><cites>FETCH-LOGICAL-a402t-72a3434b06d37283c45d9eaed8dcea1a798b71efb33a7b6591dc7130b1ad55a13</cites><orcidid>0000-0002-9063-3586 ; 0000-0003-2866-2113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c12716$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c12716$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Cisquella-Serra, Albert</creatorcontrib><creatorcontrib>Galobardes-Esteban, Marc</creatorcontrib><creatorcontrib>Gamero-Castaño, Manuel</creatorcontrib><title>Scalable Microfabrication of Multi-Emitter Arrays in Silicon for a Compact Microfluidic Electrospray Propulsion System</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The recent proliferation of SmallSats and their use in increasingly demanding applications require the development of onboard electric propulsion compatible with the power, mass, and volume constraints of these spacecraft. Electrospray propulsion is a promising technology for SmallSats due to its unique high efficiency and scalability across the wide power range of these platforms, for example, from a few watts available in a CubeSat to a few hundred watts in a MiniSat. The implementation of electrospray propulsion requires the use of microfabrication techniques to create compact arrays of thousands of electrospray emitters. This article demonstrates the microfabrication of multi-emitter electrospray sources of a scalable size for electrospray propulsion. In particular, a microfabrication and assembly process is developed and demonstrated by fabricating sources with arrays of 1, 64, and 256 emitters. The electrospray sources are tested in a relevant environment for space propulsion (inside a vacuum chamber), exhibiting excellent propulsive performance (e.g., absence of beam impingement in the extractor electrode, absence of hysteresis in the beam current versus propellant flow rate characteristic, proper operation in the cone-jet electrospraying mode, etc.) and nearly coincident output per emitter. Several design elements contribute to this performance: the even distribution of the propellant among all emitters made possible by the implementation of a network of microfluidic channels in the backside of the emitter array; the small dead volume of the network of microfluidic channels; the accurate alignment between the emitters and extractor orifices; and the use of a pipe-flow configuration to drive the propellant through closed conduits, which protects the propellant.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLxDAUhYMozvjYus5ShI55tZ1uhGEYHzCiMLoOt2mqkbSpSSrMvzcyg-DC1Q0353wXzkHogpIZJYxegwrQmRlTlJW0OEBTWgmRzVnODn_fQkzQSQgfhBSckfwYTXhBKSOUTdHXRoGF2mr8aJR3LdTeKIjG9di1-HG00WSrzsSoPV54D9uATY83xhqVJK3zGPDSdQOouCfY0TRG4ZXVKnoXhuTBz94Now0_1M02RN2doaMWbNDn-3mKXm9XL8v7bP1097BcrDMQhMWsZMAFFzUpGl6yOVcibyoNupk3SgOFsprXJdVtzTmUdZFXtFEl5aSm0OQ5UH6KbnbcYaw7nUx99GDl4E0HfisdGPn3pzfv8s19ySpnKSSeAJd7gHefow5RdiYobS302o1BptRzIXjFiiSd7aQphRC8bn_PUCJ_ypK7suS-rGS42hnSXn640fcpiv_E3-s2mLo</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>Cisquella-Serra, Albert</creator><creator>Galobardes-Esteban, Marc</creator><creator>Gamero-Castaño, Manuel</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9063-3586</orcidid><orcidid>https://orcid.org/0000-0003-2866-2113</orcidid></search><sort><creationdate>20220928</creationdate><title>Scalable Microfabrication of Multi-Emitter Arrays in Silicon for a Compact Microfluidic Electrospray Propulsion System</title><author>Cisquella-Serra, Albert ; Galobardes-Esteban, Marc ; Gamero-Castaño, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-72a3434b06d37283c45d9eaed8dcea1a798b71efb33a7b6591dc7130b1ad55a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cisquella-Serra, Albert</creatorcontrib><creatorcontrib>Galobardes-Esteban, Marc</creatorcontrib><creatorcontrib>Gamero-Castaño, Manuel</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cisquella-Serra, Albert</au><au>Galobardes-Esteban, Marc</au><au>Gamero-Castaño, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Microfabrication of Multi-Emitter Arrays in Silicon for a Compact Microfluidic Electrospray Propulsion System</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-09-28</date><risdate>2022</risdate><volume>14</volume><issue>38</issue><spage>43527</spage><epage>43537</epage><pages>43527-43537</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The recent proliferation of SmallSats and their use in increasingly demanding applications require the development of onboard electric propulsion compatible with the power, mass, and volume constraints of these spacecraft. Electrospray propulsion is a promising technology for SmallSats due to its unique high efficiency and scalability across the wide power range of these platforms, for example, from a few watts available in a CubeSat to a few hundred watts in a MiniSat. The implementation of electrospray propulsion requires the use of microfabrication techniques to create compact arrays of thousands of electrospray emitters. This article demonstrates the microfabrication of multi-emitter electrospray sources of a scalable size for electrospray propulsion. In particular, a microfabrication and assembly process is developed and demonstrated by fabricating sources with arrays of 1, 64, and 256 emitters. The electrospray sources are tested in a relevant environment for space propulsion (inside a vacuum chamber), exhibiting excellent propulsive performance (e.g., absence of beam impingement in the extractor electrode, absence of hysteresis in the beam current versus propellant flow rate characteristic, proper operation in the cone-jet electrospraying mode, etc.) and nearly coincident output per emitter. Several design elements contribute to this performance: the even distribution of the propellant among all emitters made possible by the implementation of a network of microfluidic channels in the backside of the emitter array; the small dead volume of the network of microfluidic channels; the accurate alignment between the emitters and extractor orifices; and the use of a pipe-flow configuration to drive the propellant through closed conduits, which protects the propellant.</abstract><pub>American Chemical Society</pub><pmid>36112012</pmid><doi>10.1021/acsami.2c12716</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9063-3586</orcidid><orcidid>https://orcid.org/0000-0003-2866-2113</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-09, Vol.14 (38), p.43527-43537 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9523613 |
source | American Chemical Society Journals |
subjects | Functional Inorganic Materials and Devices |
title | Scalable Microfabrication of Multi-Emitter Arrays in Silicon for a Compact Microfluidic Electrospray Propulsion System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Microfabrication%20of%20Multi-Emitter%20Arrays%20in%20Silicon%20for%20a%20Compact%20Microfluidic%20Electrospray%20Propulsion%20System&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Cisquella-Serra,%20Albert&rft.date=2022-09-28&rft.volume=14&rft.issue=38&rft.spage=43527&rft.epage=43537&rft.pages=43527-43537&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c12716&rft_dat=%3Cproquest_pubme%3E2715443926%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715443926&rft_id=info:pmid/36112012&rfr_iscdi=true |