The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines
Epstein-Barr virus (EBV) persists in human cells as episomes. EBV episomes are chromatinized and their 3D conformation varies greatly in cells expressing different latency genes. We used HiChIP, an assay which combines genome-wide chromatin conformation capture followed by deep sequencing (Hi-C) and...
Gespeichert in:
Veröffentlicht in: | Journal of virology 2022-09, Vol.96 (18), p.e0073922-e0073922 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0073922 |
---|---|
container_issue | 18 |
container_start_page | e0073922 |
container_title | Journal of virology |
container_volume | 96 |
creator | Ding, Weiyue Wang, Chong Narita, Yohei Wang, Hongbo Leong, Merrin Man Long Huang, Alvin Liao, Yifei Liu, Xuefeng Okuno, Yusuke Kimura, Hiroshi Gewurz, Benjamin Teng, Mingxian Jin, Shuilin Sato, Yoshitaka Zhao, Bo |
description | Epstein-Barr virus (EBV) persists in human cells as episomes. EBV episomes are chromatinized and their 3D conformation varies greatly in cells expressing different latency genes. We used HiChIP, an assay which combines genome-wide chromatin conformation capture followed by deep sequencing (Hi-C) and chromatin immunoprecipitation (ChIP), to interrogate the EBV episome 3D conformation in different cancer cell lines. In an EBV-transformed lymphoblastoid cell line (LCL) GM12878 expressing type III EBV latency genes, abundant genomic interactions were identified by H3K27ac HiChIP. A strong enhancer was located near the BILF2 gene and looped to multiple genes around BALFs loci. Perturbation of the BILF2 enhancer by CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) altered the expression of BILF2 enhancer-linked genes, including BARF0 and BALF2, suggesting that this enhancer regulates the expression of linked genes. H3K27ac ChIP followed by deep sequencing (ChIP-seq) identified several strong EBV enhancers in T/NK (natural killer) lymphoma cells that express type II EBV latency genes. Extensive intragenomic interactions were also found which linked enhancers to target genes. A strong enhancer at BILF2 also looped to the BALF loci. CRISPRi also validated the functional connection between BILF2 enhancer and BARF1 gene. In contrast, H3K27ac HiChIP found significantly fewer intragenomic interactions in type I EBV latency gene-expressing primary effusion lymphoma (PEL) cell lines. These data provided new insight into the regulation of EBV latency gene expression in different EBV-associated tumors.
EBV is the first human DNA tumor virus identified, discovered over 50 years ago. EBV causes ~200,000 cases of various cancers each year. EBV-encoded oncogenes, noncoding RNAs, and microRNAs (miRNAs) can promote cell growth and survival and suppress senescence. Regulation of EBV gene expression is very complex. The viral C promoter regulates the expression of all EBV nuclear antigens (EBNAs), some of which are very far away from the C promoter. Another way by which the virus activates remote gene expression is through DNA looping. In this study, we describe the viral genome looping patterns in various EBV-associated cancer cell lines and identify important EBV enhancers in these cells. This study also identified novel opportunities to perturb and eventually control EBV gene expression in these cancer cells. |
doi_str_mv | 10.1128/jvi.00739-22 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9517713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2713312666</sourcerecordid><originalsourceid>FETCH-LOGICAL-a484t-3a27fd6644bba736f9b1a5e47c319665ad63c6c2630174b4a3ca2c15caa4f1853</originalsourceid><addsrcrecordid>eNp1kU1Lw0AQhhdRbK3ePEuOCqbuVzbJRaihaqHgpYoHYZlsNnZLu6m7ScF_b2pq0YOnOcwzzzDzInRO8JAQmtwsNmaIcczSkNID1Cc4TcIoIvwQ9TGmNIxY8tpDJ94vMCacC36MekzglDPC--htNtfBeO1rbWx4B84FL8Y1PhjbOVilXTCxtXagalPZYAq28ArW2gfGdmA48r5SBmpdBFk3kenlMpgaq_0pOiph6fXZrg7Q8_14lj2G06eHSTaahsATXocMaFwWQnCe5xAzUaY5gUjzWDGSChFBIZgSigqGScxzDkwBVSRSALwkScQG6Lbzrpt8pQulbe1gKdfOrMB9ygqM_NuxZi7fq41MIxLHhLWCy53AVR-N9rVcGa_aO8DqqvGSbiFChRAtet2hylXeO13u1xAst4HINhD5HYiktMWvOhz8ispF1TjbfuI_9uL3GXvxT1rsCzOAlMs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713312666</pqid></control><display><type>article</type><title>The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ding, Weiyue ; Wang, Chong ; Narita, Yohei ; Wang, Hongbo ; Leong, Merrin Man Long ; Huang, Alvin ; Liao, Yifei ; Liu, Xuefeng ; Okuno, Yusuke ; Kimura, Hiroshi ; Gewurz, Benjamin ; Teng, Mingxian ; Jin, Shuilin ; Sato, Yoshitaka ; Zhao, Bo</creator><contributor>Frappier, Lori</contributor><creatorcontrib>Ding, Weiyue ; Wang, Chong ; Narita, Yohei ; Wang, Hongbo ; Leong, Merrin Man Long ; Huang, Alvin ; Liao, Yifei ; Liu, Xuefeng ; Okuno, Yusuke ; Kimura, Hiroshi ; Gewurz, Benjamin ; Teng, Mingxian ; Jin, Shuilin ; Sato, Yoshitaka ; Zhao, Bo ; Frappier, Lori</creatorcontrib><description>Epstein-Barr virus (EBV) persists in human cells as episomes. EBV episomes are chromatinized and their 3D conformation varies greatly in cells expressing different latency genes. We used HiChIP, an assay which combines genome-wide chromatin conformation capture followed by deep sequencing (Hi-C) and chromatin immunoprecipitation (ChIP), to interrogate the EBV episome 3D conformation in different cancer cell lines. In an EBV-transformed lymphoblastoid cell line (LCL) GM12878 expressing type III EBV latency genes, abundant genomic interactions were identified by H3K27ac HiChIP. A strong enhancer was located near the BILF2 gene and looped to multiple genes around BALFs loci. Perturbation of the BILF2 enhancer by CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) altered the expression of BILF2 enhancer-linked genes, including BARF0 and BALF2, suggesting that this enhancer regulates the expression of linked genes. H3K27ac ChIP followed by deep sequencing (ChIP-seq) identified several strong EBV enhancers in T/NK (natural killer) lymphoma cells that express type II EBV latency genes. Extensive intragenomic interactions were also found which linked enhancers to target genes. A strong enhancer at BILF2 also looped to the BALF loci. CRISPRi also validated the functional connection between BILF2 enhancer and BARF1 gene. In contrast, H3K27ac HiChIP found significantly fewer intragenomic interactions in type I EBV latency gene-expressing primary effusion lymphoma (PEL) cell lines. These data provided new insight into the regulation of EBV latency gene expression in different EBV-associated tumors.
EBV is the first human DNA tumor virus identified, discovered over 50 years ago. EBV causes ~200,000 cases of various cancers each year. EBV-encoded oncogenes, noncoding RNAs, and microRNAs (miRNAs) can promote cell growth and survival and suppress senescence. Regulation of EBV gene expression is very complex. The viral C promoter regulates the expression of all EBV nuclear antigens (EBNAs), some of which are very far away from the C promoter. Another way by which the virus activates remote gene expression is through DNA looping. In this study, we describe the viral genome looping patterns in various EBV-associated cancer cell lines and identify important EBV enhancers in these cells. This study also identified novel opportunities to perturb and eventually control EBV gene expression in these cancer cells.</description><identifier>ISSN: 0022-538X</identifier><identifier>EISSN: 1098-5514</identifier><identifier>DOI: 10.1128/jvi.00739-22</identifier><identifier>PMID: 36094314</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Cell Line, Tumor ; Enhancer Elements, Genetic - genetics ; Epstein-Barr Virus Infections - genetics ; Epstein-Barr Virus Infections - virology ; Epstein-Barr Virus Nuclear Antigens - genetics ; Genome and Regulation of Viral Gene Expression ; Genome Replication and Regulation of Viral Gene Expression ; Herpesvirus 4, Human - genetics ; Humans ; MicroRNAs - metabolism ; Neoplasms - virology ; Plasmids - chemistry ; Plasmids - genetics ; Plasmids - metabolism ; Viral Proteins - genetics ; Virology ; Virus Latency - genetics</subject><ispartof>Journal of virology, 2022-09, Vol.96 (18), p.e0073922-e0073922</ispartof><rights>Copyright © 2022 American Society for Microbiology.</rights><rights>Copyright © 2022 American Society for Microbiology. 2022 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a484t-3a27fd6644bba736f9b1a5e47c319665ad63c6c2630174b4a3ca2c15caa4f1853</citedby><cites>FETCH-LOGICAL-a484t-3a27fd6644bba736f9b1a5e47c319665ad63c6c2630174b4a3ca2c15caa4f1853</cites><orcidid>0000-0002-3965-3418 ; 0000-0002-8536-8941 ; 0000-0002-8612-5597 ; 0000-0002-8541-6413 ; 0000-0001-8063-5660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9517713/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9517713/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36094314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Frappier, Lori</contributor><creatorcontrib>Ding, Weiyue</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Narita, Yohei</creatorcontrib><creatorcontrib>Wang, Hongbo</creatorcontrib><creatorcontrib>Leong, Merrin Man Long</creatorcontrib><creatorcontrib>Huang, Alvin</creatorcontrib><creatorcontrib>Liao, Yifei</creatorcontrib><creatorcontrib>Liu, Xuefeng</creatorcontrib><creatorcontrib>Okuno, Yusuke</creatorcontrib><creatorcontrib>Kimura, Hiroshi</creatorcontrib><creatorcontrib>Gewurz, Benjamin</creatorcontrib><creatorcontrib>Teng, Mingxian</creatorcontrib><creatorcontrib>Jin, Shuilin</creatorcontrib><creatorcontrib>Sato, Yoshitaka</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><title>The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines</title><title>Journal of virology</title><addtitle>J Virol</addtitle><addtitle>J Virol</addtitle><description>Epstein-Barr virus (EBV) persists in human cells as episomes. EBV episomes are chromatinized and their 3D conformation varies greatly in cells expressing different latency genes. We used HiChIP, an assay which combines genome-wide chromatin conformation capture followed by deep sequencing (Hi-C) and chromatin immunoprecipitation (ChIP), to interrogate the EBV episome 3D conformation in different cancer cell lines. In an EBV-transformed lymphoblastoid cell line (LCL) GM12878 expressing type III EBV latency genes, abundant genomic interactions were identified by H3K27ac HiChIP. A strong enhancer was located near the BILF2 gene and looped to multiple genes around BALFs loci. Perturbation of the BILF2 enhancer by CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) altered the expression of BILF2 enhancer-linked genes, including BARF0 and BALF2, suggesting that this enhancer regulates the expression of linked genes. H3K27ac ChIP followed by deep sequencing (ChIP-seq) identified several strong EBV enhancers in T/NK (natural killer) lymphoma cells that express type II EBV latency genes. Extensive intragenomic interactions were also found which linked enhancers to target genes. A strong enhancer at BILF2 also looped to the BALF loci. CRISPRi also validated the functional connection between BILF2 enhancer and BARF1 gene. In contrast, H3K27ac HiChIP found significantly fewer intragenomic interactions in type I EBV latency gene-expressing primary effusion lymphoma (PEL) cell lines. These data provided new insight into the regulation of EBV latency gene expression in different EBV-associated tumors.
EBV is the first human DNA tumor virus identified, discovered over 50 years ago. EBV causes ~200,000 cases of various cancers each year. EBV-encoded oncogenes, noncoding RNAs, and microRNAs (miRNAs) can promote cell growth and survival and suppress senescence. Regulation of EBV gene expression is very complex. The viral C promoter regulates the expression of all EBV nuclear antigens (EBNAs), some of which are very far away from the C promoter. Another way by which the virus activates remote gene expression is through DNA looping. In this study, we describe the viral genome looping patterns in various EBV-associated cancer cell lines and identify important EBV enhancers in these cells. This study also identified novel opportunities to perturb and eventually control EBV gene expression in these cancer cells.</description><subject>Cell Line, Tumor</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Epstein-Barr Virus Infections - genetics</subject><subject>Epstein-Barr Virus Infections - virology</subject><subject>Epstein-Barr Virus Nuclear Antigens - genetics</subject><subject>Genome and Regulation of Viral Gene Expression</subject><subject>Genome Replication and Regulation of Viral Gene Expression</subject><subject>Herpesvirus 4, Human - genetics</subject><subject>Humans</subject><subject>MicroRNAs - metabolism</subject><subject>Neoplasms - virology</subject><subject>Plasmids - chemistry</subject><subject>Plasmids - genetics</subject><subject>Plasmids - metabolism</subject><subject>Viral Proteins - genetics</subject><subject>Virology</subject><subject>Virus Latency - genetics</subject><issn>0022-538X</issn><issn>1098-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1Lw0AQhhdRbK3ePEuOCqbuVzbJRaihaqHgpYoHYZlsNnZLu6m7ScF_b2pq0YOnOcwzzzDzInRO8JAQmtwsNmaIcczSkNID1Cc4TcIoIvwQ9TGmNIxY8tpDJ94vMCacC36MekzglDPC--htNtfBeO1rbWx4B84FL8Y1PhjbOVilXTCxtXagalPZYAq28ArW2gfGdmA48r5SBmpdBFk3kenlMpgaq_0pOiph6fXZrg7Q8_14lj2G06eHSTaahsATXocMaFwWQnCe5xAzUaY5gUjzWDGSChFBIZgSigqGScxzDkwBVSRSALwkScQG6Lbzrpt8pQulbe1gKdfOrMB9ygqM_NuxZi7fq41MIxLHhLWCy53AVR-N9rVcGa_aO8DqqvGSbiFChRAtet2hylXeO13u1xAst4HINhD5HYiktMWvOhz8ispF1TjbfuI_9uL3GXvxT1rsCzOAlMs</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>Ding, Weiyue</creator><creator>Wang, Chong</creator><creator>Narita, Yohei</creator><creator>Wang, Hongbo</creator><creator>Leong, Merrin Man Long</creator><creator>Huang, Alvin</creator><creator>Liao, Yifei</creator><creator>Liu, Xuefeng</creator><creator>Okuno, Yusuke</creator><creator>Kimura, Hiroshi</creator><creator>Gewurz, Benjamin</creator><creator>Teng, Mingxian</creator><creator>Jin, Shuilin</creator><creator>Sato, Yoshitaka</creator><creator>Zhao, Bo</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3965-3418</orcidid><orcidid>https://orcid.org/0000-0002-8536-8941</orcidid><orcidid>https://orcid.org/0000-0002-8612-5597</orcidid><orcidid>https://orcid.org/0000-0002-8541-6413</orcidid><orcidid>https://orcid.org/0000-0001-8063-5660</orcidid></search><sort><creationdate>20220928</creationdate><title>The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines</title><author>Ding, Weiyue ; Wang, Chong ; Narita, Yohei ; Wang, Hongbo ; Leong, Merrin Man Long ; Huang, Alvin ; Liao, Yifei ; Liu, Xuefeng ; Okuno, Yusuke ; Kimura, Hiroshi ; Gewurz, Benjamin ; Teng, Mingxian ; Jin, Shuilin ; Sato, Yoshitaka ; Zhao, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a484t-3a27fd6644bba736f9b1a5e47c319665ad63c6c2630174b4a3ca2c15caa4f1853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cell Line, Tumor</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Epstein-Barr Virus Infections - genetics</topic><topic>Epstein-Barr Virus Infections - virology</topic><topic>Epstein-Barr Virus Nuclear Antigens - genetics</topic><topic>Genome and Regulation of Viral Gene Expression</topic><topic>Genome Replication and Regulation of Viral Gene Expression</topic><topic>Herpesvirus 4, Human - genetics</topic><topic>Humans</topic><topic>MicroRNAs - metabolism</topic><topic>Neoplasms - virology</topic><topic>Plasmids - chemistry</topic><topic>Plasmids - genetics</topic><topic>Plasmids - metabolism</topic><topic>Viral Proteins - genetics</topic><topic>Virology</topic><topic>Virus Latency - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Weiyue</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Narita, Yohei</creatorcontrib><creatorcontrib>Wang, Hongbo</creatorcontrib><creatorcontrib>Leong, Merrin Man Long</creatorcontrib><creatorcontrib>Huang, Alvin</creatorcontrib><creatorcontrib>Liao, Yifei</creatorcontrib><creatorcontrib>Liu, Xuefeng</creatorcontrib><creatorcontrib>Okuno, Yusuke</creatorcontrib><creatorcontrib>Kimura, Hiroshi</creatorcontrib><creatorcontrib>Gewurz, Benjamin</creatorcontrib><creatorcontrib>Teng, Mingxian</creatorcontrib><creatorcontrib>Jin, Shuilin</creatorcontrib><creatorcontrib>Sato, Yoshitaka</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Weiyue</au><au>Wang, Chong</au><au>Narita, Yohei</au><au>Wang, Hongbo</au><au>Leong, Merrin Man Long</au><au>Huang, Alvin</au><au>Liao, Yifei</au><au>Liu, Xuefeng</au><au>Okuno, Yusuke</au><au>Kimura, Hiroshi</au><au>Gewurz, Benjamin</au><au>Teng, Mingxian</au><au>Jin, Shuilin</au><au>Sato, Yoshitaka</au><au>Zhao, Bo</au><au>Frappier, Lori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines</atitle><jtitle>Journal of virology</jtitle><stitle>J Virol</stitle><addtitle>J Virol</addtitle><date>2022-09-28</date><risdate>2022</risdate><volume>96</volume><issue>18</issue><spage>e0073922</spage><epage>e0073922</epage><pages>e0073922-e0073922</pages><issn>0022-538X</issn><eissn>1098-5514</eissn><abstract>Epstein-Barr virus (EBV) persists in human cells as episomes. EBV episomes are chromatinized and their 3D conformation varies greatly in cells expressing different latency genes. We used HiChIP, an assay which combines genome-wide chromatin conformation capture followed by deep sequencing (Hi-C) and chromatin immunoprecipitation (ChIP), to interrogate the EBV episome 3D conformation in different cancer cell lines. In an EBV-transformed lymphoblastoid cell line (LCL) GM12878 expressing type III EBV latency genes, abundant genomic interactions were identified by H3K27ac HiChIP. A strong enhancer was located near the BILF2 gene and looped to multiple genes around BALFs loci. Perturbation of the BILF2 enhancer by CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) altered the expression of BILF2 enhancer-linked genes, including BARF0 and BALF2, suggesting that this enhancer regulates the expression of linked genes. H3K27ac ChIP followed by deep sequencing (ChIP-seq) identified several strong EBV enhancers in T/NK (natural killer) lymphoma cells that express type II EBV latency genes. Extensive intragenomic interactions were also found which linked enhancers to target genes. A strong enhancer at BILF2 also looped to the BALF loci. CRISPRi also validated the functional connection between BILF2 enhancer and BARF1 gene. In contrast, H3K27ac HiChIP found significantly fewer intragenomic interactions in type I EBV latency gene-expressing primary effusion lymphoma (PEL) cell lines. These data provided new insight into the regulation of EBV latency gene expression in different EBV-associated tumors.
EBV is the first human DNA tumor virus identified, discovered over 50 years ago. EBV causes ~200,000 cases of various cancers each year. EBV-encoded oncogenes, noncoding RNAs, and microRNAs (miRNAs) can promote cell growth and survival and suppress senescence. Regulation of EBV gene expression is very complex. The viral C promoter regulates the expression of all EBV nuclear antigens (EBNAs), some of which are very far away from the C promoter. Another way by which the virus activates remote gene expression is through DNA looping. In this study, we describe the viral genome looping patterns in various EBV-associated cancer cell lines and identify important EBV enhancers in these cells. This study also identified novel opportunities to perturb and eventually control EBV gene expression in these cancer cells.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>36094314</pmid><doi>10.1128/jvi.00739-22</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3965-3418</orcidid><orcidid>https://orcid.org/0000-0002-8536-8941</orcidid><orcidid>https://orcid.org/0000-0002-8612-5597</orcidid><orcidid>https://orcid.org/0000-0002-8541-6413</orcidid><orcidid>https://orcid.org/0000-0001-8063-5660</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-538X |
ispartof | Journal of virology, 2022-09, Vol.96 (18), p.e0073922-e0073922 |
issn | 0022-538X 1098-5514 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9517713 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Cell Line, Tumor Enhancer Elements, Genetic - genetics Epstein-Barr Virus Infections - genetics Epstein-Barr Virus Infections - virology Epstein-Barr Virus Nuclear Antigens - genetics Genome and Regulation of Viral Gene Expression Genome Replication and Regulation of Viral Gene Expression Herpesvirus 4, Human - genetics Humans MicroRNAs - metabolism Neoplasms - virology Plasmids - chemistry Plasmids - genetics Plasmids - metabolism Viral Proteins - genetics Virology Virus Latency - genetics |
title | The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Epstein-Barr%20Virus%20Enhancer%20Interaction%20Landscapes%20in%20Virus-Associated%20Cancer%20Cell%20Lines&rft.jtitle=Journal%20of%20virology&rft.au=Ding,%20Weiyue&rft.date=2022-09-28&rft.volume=96&rft.issue=18&rft.spage=e0073922&rft.epage=e0073922&rft.pages=e0073922-e0073922&rft.issn=0022-538X&rft.eissn=1098-5514&rft_id=info:doi/10.1128/jvi.00739-22&rft_dat=%3Cproquest_pubme%3E2713312666%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2713312666&rft_id=info:pmid/36094314&rfr_iscdi=true |