The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines

Epstein-Barr virus (EBV) persists in human cells as episomes. EBV episomes are chromatinized and their 3D conformation varies greatly in cells expressing different latency genes. We used HiChIP, an assay which combines genome-wide chromatin conformation capture followed by deep sequencing (Hi-C) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of virology 2022-09, Vol.96 (18), p.e0073922-e0073922
Hauptverfasser: Ding, Weiyue, Wang, Chong, Narita, Yohei, Wang, Hongbo, Leong, Merrin Man Long, Huang, Alvin, Liao, Yifei, Liu, Xuefeng, Okuno, Yusuke, Kimura, Hiroshi, Gewurz, Benjamin, Teng, Mingxian, Jin, Shuilin, Sato, Yoshitaka, Zhao, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0073922
container_issue 18
container_start_page e0073922
container_title Journal of virology
container_volume 96
creator Ding, Weiyue
Wang, Chong
Narita, Yohei
Wang, Hongbo
Leong, Merrin Man Long
Huang, Alvin
Liao, Yifei
Liu, Xuefeng
Okuno, Yusuke
Kimura, Hiroshi
Gewurz, Benjamin
Teng, Mingxian
Jin, Shuilin
Sato, Yoshitaka
Zhao, Bo
description Epstein-Barr virus (EBV) persists in human cells as episomes. EBV episomes are chromatinized and their 3D conformation varies greatly in cells expressing different latency genes. We used HiChIP, an assay which combines genome-wide chromatin conformation capture followed by deep sequencing (Hi-C) and chromatin immunoprecipitation (ChIP), to interrogate the EBV episome 3D conformation in different cancer cell lines. In an EBV-transformed lymphoblastoid cell line (LCL) GM12878 expressing type III EBV latency genes, abundant genomic interactions were identified by H3K27ac HiChIP. A strong enhancer was located near the BILF2 gene and looped to multiple genes around BALFs loci. Perturbation of the BILF2 enhancer by CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) altered the expression of BILF2 enhancer-linked genes, including BARF0 and BALF2, suggesting that this enhancer regulates the expression of linked genes. H3K27ac ChIP followed by deep sequencing (ChIP-seq) identified several strong EBV enhancers in T/NK (natural killer) lymphoma cells that express type II EBV latency genes. Extensive intragenomic interactions were also found which linked enhancers to target genes. A strong enhancer at BILF2 also looped to the BALF loci. CRISPRi also validated the functional connection between BILF2 enhancer and BARF1 gene. In contrast, H3K27ac HiChIP found significantly fewer intragenomic interactions in type I EBV latency gene-expressing primary effusion lymphoma (PEL) cell lines. These data provided new insight into the regulation of EBV latency gene expression in different EBV-associated tumors. EBV is the first human DNA tumor virus identified, discovered over 50 years ago. EBV causes ~200,000 cases of various cancers each year. EBV-encoded oncogenes, noncoding RNAs, and microRNAs (miRNAs) can promote cell growth and survival and suppress senescence. Regulation of EBV gene expression is very complex. The viral C promoter regulates the expression of all EBV nuclear antigens (EBNAs), some of which are very far away from the C promoter. Another way by which the virus activates remote gene expression is through DNA looping. In this study, we describe the viral genome looping patterns in various EBV-associated cancer cell lines and identify important EBV enhancers in these cells. This study also identified novel opportunities to perturb and eventually control EBV gene expression in these cancer cells.
doi_str_mv 10.1128/jvi.00739-22
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9517713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2713312666</sourcerecordid><originalsourceid>FETCH-LOGICAL-a484t-3a27fd6644bba736f9b1a5e47c319665ad63c6c2630174b4a3ca2c15caa4f1853</originalsourceid><addsrcrecordid>eNp1kU1Lw0AQhhdRbK3ePEuOCqbuVzbJRaihaqHgpYoHYZlsNnZLu6m7ScF_b2pq0YOnOcwzzzDzInRO8JAQmtwsNmaIcczSkNID1Cc4TcIoIvwQ9TGmNIxY8tpDJ94vMCacC36MekzglDPC--htNtfBeO1rbWx4B84FL8Y1PhjbOVilXTCxtXagalPZYAq28ArW2gfGdmA48r5SBmpdBFk3kenlMpgaq_0pOiph6fXZrg7Q8_14lj2G06eHSTaahsATXocMaFwWQnCe5xAzUaY5gUjzWDGSChFBIZgSigqGScxzDkwBVSRSALwkScQG6Lbzrpt8pQulbe1gKdfOrMB9ygqM_NuxZi7fq41MIxLHhLWCy53AVR-N9rVcGa_aO8DqqvGSbiFChRAtet2hylXeO13u1xAst4HINhD5HYiktMWvOhz8ispF1TjbfuI_9uL3GXvxT1rsCzOAlMs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713312666</pqid></control><display><type>article</type><title>The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ding, Weiyue ; Wang, Chong ; Narita, Yohei ; Wang, Hongbo ; Leong, Merrin Man Long ; Huang, Alvin ; Liao, Yifei ; Liu, Xuefeng ; Okuno, Yusuke ; Kimura, Hiroshi ; Gewurz, Benjamin ; Teng, Mingxian ; Jin, Shuilin ; Sato, Yoshitaka ; Zhao, Bo</creator><contributor>Frappier, Lori</contributor><creatorcontrib>Ding, Weiyue ; Wang, Chong ; Narita, Yohei ; Wang, Hongbo ; Leong, Merrin Man Long ; Huang, Alvin ; Liao, Yifei ; Liu, Xuefeng ; Okuno, Yusuke ; Kimura, Hiroshi ; Gewurz, Benjamin ; Teng, Mingxian ; Jin, Shuilin ; Sato, Yoshitaka ; Zhao, Bo ; Frappier, Lori</creatorcontrib><description>Epstein-Barr virus (EBV) persists in human cells as episomes. EBV episomes are chromatinized and their 3D conformation varies greatly in cells expressing different latency genes. We used HiChIP, an assay which combines genome-wide chromatin conformation capture followed by deep sequencing (Hi-C) and chromatin immunoprecipitation (ChIP), to interrogate the EBV episome 3D conformation in different cancer cell lines. In an EBV-transformed lymphoblastoid cell line (LCL) GM12878 expressing type III EBV latency genes, abundant genomic interactions were identified by H3K27ac HiChIP. A strong enhancer was located near the BILF2 gene and looped to multiple genes around BALFs loci. Perturbation of the BILF2 enhancer by CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) altered the expression of BILF2 enhancer-linked genes, including BARF0 and BALF2, suggesting that this enhancer regulates the expression of linked genes. H3K27ac ChIP followed by deep sequencing (ChIP-seq) identified several strong EBV enhancers in T/NK (natural killer) lymphoma cells that express type II EBV latency genes. Extensive intragenomic interactions were also found which linked enhancers to target genes. A strong enhancer at BILF2 also looped to the BALF loci. CRISPRi also validated the functional connection between BILF2 enhancer and BARF1 gene. In contrast, H3K27ac HiChIP found significantly fewer intragenomic interactions in type I EBV latency gene-expressing primary effusion lymphoma (PEL) cell lines. These data provided new insight into the regulation of EBV latency gene expression in different EBV-associated tumors. EBV is the first human DNA tumor virus identified, discovered over 50 years ago. EBV causes ~200,000 cases of various cancers each year. EBV-encoded oncogenes, noncoding RNAs, and microRNAs (miRNAs) can promote cell growth and survival and suppress senescence. Regulation of EBV gene expression is very complex. The viral C promoter regulates the expression of all EBV nuclear antigens (EBNAs), some of which are very far away from the C promoter. Another way by which the virus activates remote gene expression is through DNA looping. In this study, we describe the viral genome looping patterns in various EBV-associated cancer cell lines and identify important EBV enhancers in these cells. This study also identified novel opportunities to perturb and eventually control EBV gene expression in these cancer cells.</description><identifier>ISSN: 0022-538X</identifier><identifier>EISSN: 1098-5514</identifier><identifier>DOI: 10.1128/jvi.00739-22</identifier><identifier>PMID: 36094314</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Cell Line, Tumor ; Enhancer Elements, Genetic - genetics ; Epstein-Barr Virus Infections - genetics ; Epstein-Barr Virus Infections - virology ; Epstein-Barr Virus Nuclear Antigens - genetics ; Genome and Regulation of Viral Gene Expression ; Genome Replication and Regulation of Viral Gene Expression ; Herpesvirus 4, Human - genetics ; Humans ; MicroRNAs - metabolism ; Neoplasms - virology ; Plasmids - chemistry ; Plasmids - genetics ; Plasmids - metabolism ; Viral Proteins - genetics ; Virology ; Virus Latency - genetics</subject><ispartof>Journal of virology, 2022-09, Vol.96 (18), p.e0073922-e0073922</ispartof><rights>Copyright © 2022 American Society for Microbiology.</rights><rights>Copyright © 2022 American Society for Microbiology. 2022 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a484t-3a27fd6644bba736f9b1a5e47c319665ad63c6c2630174b4a3ca2c15caa4f1853</citedby><cites>FETCH-LOGICAL-a484t-3a27fd6644bba736f9b1a5e47c319665ad63c6c2630174b4a3ca2c15caa4f1853</cites><orcidid>0000-0002-3965-3418 ; 0000-0002-8536-8941 ; 0000-0002-8612-5597 ; 0000-0002-8541-6413 ; 0000-0001-8063-5660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9517713/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9517713/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36094314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Frappier, Lori</contributor><creatorcontrib>Ding, Weiyue</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Narita, Yohei</creatorcontrib><creatorcontrib>Wang, Hongbo</creatorcontrib><creatorcontrib>Leong, Merrin Man Long</creatorcontrib><creatorcontrib>Huang, Alvin</creatorcontrib><creatorcontrib>Liao, Yifei</creatorcontrib><creatorcontrib>Liu, Xuefeng</creatorcontrib><creatorcontrib>Okuno, Yusuke</creatorcontrib><creatorcontrib>Kimura, Hiroshi</creatorcontrib><creatorcontrib>Gewurz, Benjamin</creatorcontrib><creatorcontrib>Teng, Mingxian</creatorcontrib><creatorcontrib>Jin, Shuilin</creatorcontrib><creatorcontrib>Sato, Yoshitaka</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><title>The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines</title><title>Journal of virology</title><addtitle>J Virol</addtitle><addtitle>J Virol</addtitle><description>Epstein-Barr virus (EBV) persists in human cells as episomes. EBV episomes are chromatinized and their 3D conformation varies greatly in cells expressing different latency genes. We used HiChIP, an assay which combines genome-wide chromatin conformation capture followed by deep sequencing (Hi-C) and chromatin immunoprecipitation (ChIP), to interrogate the EBV episome 3D conformation in different cancer cell lines. In an EBV-transformed lymphoblastoid cell line (LCL) GM12878 expressing type III EBV latency genes, abundant genomic interactions were identified by H3K27ac HiChIP. A strong enhancer was located near the BILF2 gene and looped to multiple genes around BALFs loci. Perturbation of the BILF2 enhancer by CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) altered the expression of BILF2 enhancer-linked genes, including BARF0 and BALF2, suggesting that this enhancer regulates the expression of linked genes. H3K27ac ChIP followed by deep sequencing (ChIP-seq) identified several strong EBV enhancers in T/NK (natural killer) lymphoma cells that express type II EBV latency genes. Extensive intragenomic interactions were also found which linked enhancers to target genes. A strong enhancer at BILF2 also looped to the BALF loci. CRISPRi also validated the functional connection between BILF2 enhancer and BARF1 gene. In contrast, H3K27ac HiChIP found significantly fewer intragenomic interactions in type I EBV latency gene-expressing primary effusion lymphoma (PEL) cell lines. These data provided new insight into the regulation of EBV latency gene expression in different EBV-associated tumors. EBV is the first human DNA tumor virus identified, discovered over 50 years ago. EBV causes ~200,000 cases of various cancers each year. EBV-encoded oncogenes, noncoding RNAs, and microRNAs (miRNAs) can promote cell growth and survival and suppress senescence. Regulation of EBV gene expression is very complex. The viral C promoter regulates the expression of all EBV nuclear antigens (EBNAs), some of which are very far away from the C promoter. Another way by which the virus activates remote gene expression is through DNA looping. In this study, we describe the viral genome looping patterns in various EBV-associated cancer cell lines and identify important EBV enhancers in these cells. This study also identified novel opportunities to perturb and eventually control EBV gene expression in these cancer cells.</description><subject>Cell Line, Tumor</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Epstein-Barr Virus Infections - genetics</subject><subject>Epstein-Barr Virus Infections - virology</subject><subject>Epstein-Barr Virus Nuclear Antigens - genetics</subject><subject>Genome and Regulation of Viral Gene Expression</subject><subject>Genome Replication and Regulation of Viral Gene Expression</subject><subject>Herpesvirus 4, Human - genetics</subject><subject>Humans</subject><subject>MicroRNAs - metabolism</subject><subject>Neoplasms - virology</subject><subject>Plasmids - chemistry</subject><subject>Plasmids - genetics</subject><subject>Plasmids - metabolism</subject><subject>Viral Proteins - genetics</subject><subject>Virology</subject><subject>Virus Latency - genetics</subject><issn>0022-538X</issn><issn>1098-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1Lw0AQhhdRbK3ePEuOCqbuVzbJRaihaqHgpYoHYZlsNnZLu6m7ScF_b2pq0YOnOcwzzzDzInRO8JAQmtwsNmaIcczSkNID1Cc4TcIoIvwQ9TGmNIxY8tpDJ94vMCacC36MekzglDPC--htNtfBeO1rbWx4B84FL8Y1PhjbOVilXTCxtXagalPZYAq28ArW2gfGdmA48r5SBmpdBFk3kenlMpgaq_0pOiph6fXZrg7Q8_14lj2G06eHSTaahsATXocMaFwWQnCe5xAzUaY5gUjzWDGSChFBIZgSigqGScxzDkwBVSRSALwkScQG6Lbzrpt8pQulbe1gKdfOrMB9ygqM_NuxZi7fq41MIxLHhLWCy53AVR-N9rVcGa_aO8DqqvGSbiFChRAtet2hylXeO13u1xAst4HINhD5HYiktMWvOhz8ispF1TjbfuI_9uL3GXvxT1rsCzOAlMs</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>Ding, Weiyue</creator><creator>Wang, Chong</creator><creator>Narita, Yohei</creator><creator>Wang, Hongbo</creator><creator>Leong, Merrin Man Long</creator><creator>Huang, Alvin</creator><creator>Liao, Yifei</creator><creator>Liu, Xuefeng</creator><creator>Okuno, Yusuke</creator><creator>Kimura, Hiroshi</creator><creator>Gewurz, Benjamin</creator><creator>Teng, Mingxian</creator><creator>Jin, Shuilin</creator><creator>Sato, Yoshitaka</creator><creator>Zhao, Bo</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3965-3418</orcidid><orcidid>https://orcid.org/0000-0002-8536-8941</orcidid><orcidid>https://orcid.org/0000-0002-8612-5597</orcidid><orcidid>https://orcid.org/0000-0002-8541-6413</orcidid><orcidid>https://orcid.org/0000-0001-8063-5660</orcidid></search><sort><creationdate>20220928</creationdate><title>The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines</title><author>Ding, Weiyue ; Wang, Chong ; Narita, Yohei ; Wang, Hongbo ; Leong, Merrin Man Long ; Huang, Alvin ; Liao, Yifei ; Liu, Xuefeng ; Okuno, Yusuke ; Kimura, Hiroshi ; Gewurz, Benjamin ; Teng, Mingxian ; Jin, Shuilin ; Sato, Yoshitaka ; Zhao, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a484t-3a27fd6644bba736f9b1a5e47c319665ad63c6c2630174b4a3ca2c15caa4f1853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cell Line, Tumor</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Epstein-Barr Virus Infections - genetics</topic><topic>Epstein-Barr Virus Infections - virology</topic><topic>Epstein-Barr Virus Nuclear Antigens - genetics</topic><topic>Genome and Regulation of Viral Gene Expression</topic><topic>Genome Replication and Regulation of Viral Gene Expression</topic><topic>Herpesvirus 4, Human - genetics</topic><topic>Humans</topic><topic>MicroRNAs - metabolism</topic><topic>Neoplasms - virology</topic><topic>Plasmids - chemistry</topic><topic>Plasmids - genetics</topic><topic>Plasmids - metabolism</topic><topic>Viral Proteins - genetics</topic><topic>Virology</topic><topic>Virus Latency - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Weiyue</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Narita, Yohei</creatorcontrib><creatorcontrib>Wang, Hongbo</creatorcontrib><creatorcontrib>Leong, Merrin Man Long</creatorcontrib><creatorcontrib>Huang, Alvin</creatorcontrib><creatorcontrib>Liao, Yifei</creatorcontrib><creatorcontrib>Liu, Xuefeng</creatorcontrib><creatorcontrib>Okuno, Yusuke</creatorcontrib><creatorcontrib>Kimura, Hiroshi</creatorcontrib><creatorcontrib>Gewurz, Benjamin</creatorcontrib><creatorcontrib>Teng, Mingxian</creatorcontrib><creatorcontrib>Jin, Shuilin</creatorcontrib><creatorcontrib>Sato, Yoshitaka</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Weiyue</au><au>Wang, Chong</au><au>Narita, Yohei</au><au>Wang, Hongbo</au><au>Leong, Merrin Man Long</au><au>Huang, Alvin</au><au>Liao, Yifei</au><au>Liu, Xuefeng</au><au>Okuno, Yusuke</au><au>Kimura, Hiroshi</au><au>Gewurz, Benjamin</au><au>Teng, Mingxian</au><au>Jin, Shuilin</au><au>Sato, Yoshitaka</au><au>Zhao, Bo</au><au>Frappier, Lori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines</atitle><jtitle>Journal of virology</jtitle><stitle>J Virol</stitle><addtitle>J Virol</addtitle><date>2022-09-28</date><risdate>2022</risdate><volume>96</volume><issue>18</issue><spage>e0073922</spage><epage>e0073922</epage><pages>e0073922-e0073922</pages><issn>0022-538X</issn><eissn>1098-5514</eissn><abstract>Epstein-Barr virus (EBV) persists in human cells as episomes. EBV episomes are chromatinized and their 3D conformation varies greatly in cells expressing different latency genes. We used HiChIP, an assay which combines genome-wide chromatin conformation capture followed by deep sequencing (Hi-C) and chromatin immunoprecipitation (ChIP), to interrogate the EBV episome 3D conformation in different cancer cell lines. In an EBV-transformed lymphoblastoid cell line (LCL) GM12878 expressing type III EBV latency genes, abundant genomic interactions were identified by H3K27ac HiChIP. A strong enhancer was located near the BILF2 gene and looped to multiple genes around BALFs loci. Perturbation of the BILF2 enhancer by CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) altered the expression of BILF2 enhancer-linked genes, including BARF0 and BALF2, suggesting that this enhancer regulates the expression of linked genes. H3K27ac ChIP followed by deep sequencing (ChIP-seq) identified several strong EBV enhancers in T/NK (natural killer) lymphoma cells that express type II EBV latency genes. Extensive intragenomic interactions were also found which linked enhancers to target genes. A strong enhancer at BILF2 also looped to the BALF loci. CRISPRi also validated the functional connection between BILF2 enhancer and BARF1 gene. In contrast, H3K27ac HiChIP found significantly fewer intragenomic interactions in type I EBV latency gene-expressing primary effusion lymphoma (PEL) cell lines. These data provided new insight into the regulation of EBV latency gene expression in different EBV-associated tumors. EBV is the first human DNA tumor virus identified, discovered over 50 years ago. EBV causes ~200,000 cases of various cancers each year. EBV-encoded oncogenes, noncoding RNAs, and microRNAs (miRNAs) can promote cell growth and survival and suppress senescence. Regulation of EBV gene expression is very complex. The viral C promoter regulates the expression of all EBV nuclear antigens (EBNAs), some of which are very far away from the C promoter. Another way by which the virus activates remote gene expression is through DNA looping. In this study, we describe the viral genome looping patterns in various EBV-associated cancer cell lines and identify important EBV enhancers in these cells. This study also identified novel opportunities to perturb and eventually control EBV gene expression in these cancer cells.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>36094314</pmid><doi>10.1128/jvi.00739-22</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3965-3418</orcidid><orcidid>https://orcid.org/0000-0002-8536-8941</orcidid><orcidid>https://orcid.org/0000-0002-8612-5597</orcidid><orcidid>https://orcid.org/0000-0002-8541-6413</orcidid><orcidid>https://orcid.org/0000-0001-8063-5660</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-538X
ispartof Journal of virology, 2022-09, Vol.96 (18), p.e0073922-e0073922
issn 0022-538X
1098-5514
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9517713
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Cell Line, Tumor
Enhancer Elements, Genetic - genetics
Epstein-Barr Virus Infections - genetics
Epstein-Barr Virus Infections - virology
Epstein-Barr Virus Nuclear Antigens - genetics
Genome and Regulation of Viral Gene Expression
Genome Replication and Regulation of Viral Gene Expression
Herpesvirus 4, Human - genetics
Humans
MicroRNAs - metabolism
Neoplasms - virology
Plasmids - chemistry
Plasmids - genetics
Plasmids - metabolism
Viral Proteins - genetics
Virology
Virus Latency - genetics
title The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Epstein-Barr%20Virus%20Enhancer%20Interaction%20Landscapes%20in%20Virus-Associated%20Cancer%20Cell%20Lines&rft.jtitle=Journal%20of%20virology&rft.au=Ding,%20Weiyue&rft.date=2022-09-28&rft.volume=96&rft.issue=18&rft.spage=e0073922&rft.epage=e0073922&rft.pages=e0073922-e0073922&rft.issn=0022-538X&rft.eissn=1098-5514&rft_id=info:doi/10.1128/jvi.00739-22&rft_dat=%3Cproquest_pubme%3E2713312666%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2713312666&rft_id=info:pmid/36094314&rfr_iscdi=true