How Machine Learning is Powering Neuroimaging to Improve Brain Health
This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, “Neu...
Gespeichert in:
Veröffentlicht in: | Neuroinformatics (Totowa, N.J.) N.J.), 2022-10, Vol.20 (4), p.943-964 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 964 |
---|---|
container_issue | 4 |
container_start_page | 943 |
container_title | Neuroinformatics (Totowa, N.J.) |
container_volume | 20 |
creator | Singh, Nalini M. Harrod, Jordan B. Subramanian, Sandya Robinson, Mitchell Chang, Ken Cetin-Karayumak, Suheyla Dalca, Adrian Vasile Eickhoff, Simon Fox, Michael Franke, Loraine Golland, Polina Haehn, Daniel Iglesias, Juan Eugenio O’Donnell, Lauren J. Ou, Yangming Rathi, Yogesh Siddiqi, Shan H. Sun, Haoqi Westover, M. Brandon Whitfield-Gabrieli, Susan Gollub, Randy L. |
description | This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, “Neuroimaging Indicators of Brain Structure and Function - Closing the Gap Between Research and Clinical Application”, co-hosted by the McCance Center for Brain Health at Mass General Hospital and the MIT HST Neuroimaging Training Program on February 12, 2021. The symposium focused on the potential for machine learning approaches, applied to increasingly large-scale neuroimaging datasets, to transform healthcare delivery and change the trajectory of brain health by addressing brain care earlier in the lifespan. While not exhaustive, this overview uniquely addresses many of the technical challenges from image formation, to analysis and visualization, to synthesis and incorporation into the clinical workflow. Some of the ethical challenges inherent to this work are also explored, as are some of the regulatory requirements for implementation. We seek to educate, motivate, and inspire graduate students, postdoctoral fellows, and early career investigators to contribute to a future where neuroimaging meaningfully contributes to the maintenance of brain health. |
doi_str_mv | 10.1007/s12021-022-09572-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9515245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644936750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c50a5269411e3a27bd2d489820ae0f74d06db26d63ce397548ca34ed3c6ba5e73</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhq2qqFDaF-gBReqll7TjsR3HF6QW0S7S0vYAZ8vrzO4GZePFTkC8PQ5LaemBk8fy598z_hj7wOEzB9BfEkdAXgJiCUZpLM0rdsCVMiVAbV5PtTAlasP32duUrgCw0gBv2L5QQmql4YCdzsJtce78uu2pmJOLfduvijYVv8Mtxan-SWMM7catps0QirPNNoYbKr5F1_bFjFw3rN-xvaXrEr1_XA_Z5ffTi5NZOf_14-zk67z0Usuh9AqcwspIzkk41IsGG1mbGsERLLVsoGoWWDWV8CSMVrL2TkhqhK8WTpEWh-x4l7sdFxtqPPVDdJ3dxtxfvLPBtfb5Sd-u7SrcWKO4QqlywKfHgBiuR0qD3bTJU9e5nsKYLFZSGlFpBRn9-B96FcbY5_EsatTS1PnPM4U7yseQUqTlUzMc7GTJ7izZbMk-WLImXzr6d4ynK3-0ZEDsgLSdHFD8-_YLsfckYpzK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727498957</pqid></control><display><type>article</type><title>How Machine Learning is Powering Neuroimaging to Improve Brain Health</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Singh, Nalini M. ; Harrod, Jordan B. ; Subramanian, Sandya ; Robinson, Mitchell ; Chang, Ken ; Cetin-Karayumak, Suheyla ; Dalca, Adrian Vasile ; Eickhoff, Simon ; Fox, Michael ; Franke, Loraine ; Golland, Polina ; Haehn, Daniel ; Iglesias, Juan Eugenio ; O’Donnell, Lauren J. ; Ou, Yangming ; Rathi, Yogesh ; Siddiqi, Shan H. ; Sun, Haoqi ; Westover, M. Brandon ; Whitfield-Gabrieli, Susan ; Gollub, Randy L.</creator><creatorcontrib>Singh, Nalini M. ; Harrod, Jordan B. ; Subramanian, Sandya ; Robinson, Mitchell ; Chang, Ken ; Cetin-Karayumak, Suheyla ; Dalca, Adrian Vasile ; Eickhoff, Simon ; Fox, Michael ; Franke, Loraine ; Golland, Polina ; Haehn, Daniel ; Iglesias, Juan Eugenio ; O’Donnell, Lauren J. ; Ou, Yangming ; Rathi, Yogesh ; Siddiqi, Shan H. ; Sun, Haoqi ; Westover, M. Brandon ; Whitfield-Gabrieli, Susan ; Gollub, Randy L.</creatorcontrib><description>This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, “Neuroimaging Indicators of Brain Structure and Function - Closing the Gap Between Research and Clinical Application”, co-hosted by the McCance Center for Brain Health at Mass General Hospital and the MIT HST Neuroimaging Training Program on February 12, 2021. The symposium focused on the potential for machine learning approaches, applied to increasingly large-scale neuroimaging datasets, to transform healthcare delivery and change the trajectory of brain health by addressing brain care earlier in the lifespan. While not exhaustive, this overview uniquely addresses many of the technical challenges from image formation, to analysis and visualization, to synthesis and incorporation into the clinical workflow. Some of the ethical challenges inherent to this work are also explored, as are some of the regulatory requirements for implementation. We seek to educate, motivate, and inspire graduate students, postdoctoral fellows, and early career investigators to contribute to a future where neuroimaging meaningfully contributes to the maintenance of brain health.</description><identifier>ISSN: 1539-2791</identifier><identifier>ISSN: 1559-0089</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-022-09572-9</identifier><identifier>PMID: 35347570</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - diagnostic imaging ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Functional anatomy ; Humans ; Image processing ; Learning algorithms ; Life span ; Machine Learning ; Magnetic Resonance Imaging ; Medical imaging ; Neuroimaging ; Neuroimaging - methods ; Neurology ; Neurosciences ; Review ; Structure-function relationships</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2022-10, Vol.20 (4), p.943-964</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c50a5269411e3a27bd2d489820ae0f74d06db26d63ce397548ca34ed3c6ba5e73</citedby><cites>FETCH-LOGICAL-c474t-c50a5269411e3a27bd2d489820ae0f74d06db26d63ce397548ca34ed3c6ba5e73</cites><orcidid>0000-0002-9434-4044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12021-022-09572-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12021-022-09572-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35347570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Nalini M.</creatorcontrib><creatorcontrib>Harrod, Jordan B.</creatorcontrib><creatorcontrib>Subramanian, Sandya</creatorcontrib><creatorcontrib>Robinson, Mitchell</creatorcontrib><creatorcontrib>Chang, Ken</creatorcontrib><creatorcontrib>Cetin-Karayumak, Suheyla</creatorcontrib><creatorcontrib>Dalca, Adrian Vasile</creatorcontrib><creatorcontrib>Eickhoff, Simon</creatorcontrib><creatorcontrib>Fox, Michael</creatorcontrib><creatorcontrib>Franke, Loraine</creatorcontrib><creatorcontrib>Golland, Polina</creatorcontrib><creatorcontrib>Haehn, Daniel</creatorcontrib><creatorcontrib>Iglesias, Juan Eugenio</creatorcontrib><creatorcontrib>O’Donnell, Lauren J.</creatorcontrib><creatorcontrib>Ou, Yangming</creatorcontrib><creatorcontrib>Rathi, Yogesh</creatorcontrib><creatorcontrib>Siddiqi, Shan H.</creatorcontrib><creatorcontrib>Sun, Haoqi</creatorcontrib><creatorcontrib>Westover, M. Brandon</creatorcontrib><creatorcontrib>Whitfield-Gabrieli, Susan</creatorcontrib><creatorcontrib>Gollub, Randy L.</creatorcontrib><title>How Machine Learning is Powering Neuroimaging to Improve Brain Health</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, “Neuroimaging Indicators of Brain Structure and Function - Closing the Gap Between Research and Clinical Application”, co-hosted by the McCance Center for Brain Health at Mass General Hospital and the MIT HST Neuroimaging Training Program on February 12, 2021. The symposium focused on the potential for machine learning approaches, applied to increasingly large-scale neuroimaging datasets, to transform healthcare delivery and change the trajectory of brain health by addressing brain care earlier in the lifespan. While not exhaustive, this overview uniquely addresses many of the technical challenges from image formation, to analysis and visualization, to synthesis and incorporation into the clinical workflow. Some of the ethical challenges inherent to this work are also explored, as are some of the regulatory requirements for implementation. We seek to educate, motivate, and inspire graduate students, postdoctoral fellows, and early career investigators to contribute to a future where neuroimaging meaningfully contributes to the maintenance of brain health.</description><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - diagnostic imaging</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Functional anatomy</subject><subject>Humans</subject><subject>Image processing</subject><subject>Learning algorithms</subject><subject>Life span</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Review</subject><subject>Structure-function relationships</subject><issn>1539-2791</issn><issn>1559-0089</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFO3DAQhq2qqFDaF-gBReqll7TjsR3HF6QW0S7S0vYAZ8vrzO4GZePFTkC8PQ5LaemBk8fy598z_hj7wOEzB9BfEkdAXgJiCUZpLM0rdsCVMiVAbV5PtTAlasP32duUrgCw0gBv2L5QQmql4YCdzsJtce78uu2pmJOLfduvijYVv8Mtxan-SWMM7catps0QirPNNoYbKr5F1_bFjFw3rN-xvaXrEr1_XA_Z5ffTi5NZOf_14-zk67z0Usuh9AqcwspIzkk41IsGG1mbGsERLLVsoGoWWDWV8CSMVrL2TkhqhK8WTpEWh-x4l7sdFxtqPPVDdJ3dxtxfvLPBtfb5Sd-u7SrcWKO4QqlywKfHgBiuR0qD3bTJU9e5nsKYLFZSGlFpBRn9-B96FcbY5_EsatTS1PnPM4U7yseQUqTlUzMc7GTJ7izZbMk-WLImXzr6d4ynK3-0ZEDsgLSdHFD8-_YLsfckYpzK</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Singh, Nalini M.</creator><creator>Harrod, Jordan B.</creator><creator>Subramanian, Sandya</creator><creator>Robinson, Mitchell</creator><creator>Chang, Ken</creator><creator>Cetin-Karayumak, Suheyla</creator><creator>Dalca, Adrian Vasile</creator><creator>Eickhoff, Simon</creator><creator>Fox, Michael</creator><creator>Franke, Loraine</creator><creator>Golland, Polina</creator><creator>Haehn, Daniel</creator><creator>Iglesias, Juan Eugenio</creator><creator>O’Donnell, Lauren J.</creator><creator>Ou, Yangming</creator><creator>Rathi, Yogesh</creator><creator>Siddiqi, Shan H.</creator><creator>Sun, Haoqi</creator><creator>Westover, M. Brandon</creator><creator>Whitfield-Gabrieli, Susan</creator><creator>Gollub, Randy L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9434-4044</orcidid></search><sort><creationdate>20221001</creationdate><title>How Machine Learning is Powering Neuroimaging to Improve Brain Health</title><author>Singh, Nalini M. ; Harrod, Jordan B. ; Subramanian, Sandya ; Robinson, Mitchell ; Chang, Ken ; Cetin-Karayumak, Suheyla ; Dalca, Adrian Vasile ; Eickhoff, Simon ; Fox, Michael ; Franke, Loraine ; Golland, Polina ; Haehn, Daniel ; Iglesias, Juan Eugenio ; O’Donnell, Lauren J. ; Ou, Yangming ; Rathi, Yogesh ; Siddiqi, Shan H. ; Sun, Haoqi ; Westover, M. Brandon ; Whitfield-Gabrieli, Susan ; Gollub, Randy L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c50a5269411e3a27bd2d489820ae0f74d06db26d63ce397548ca34ed3c6ba5e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - diagnostic imaging</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Functional anatomy</topic><topic>Humans</topic><topic>Image processing</topic><topic>Learning algorithms</topic><topic>Life span</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Review</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Nalini M.</creatorcontrib><creatorcontrib>Harrod, Jordan B.</creatorcontrib><creatorcontrib>Subramanian, Sandya</creatorcontrib><creatorcontrib>Robinson, Mitchell</creatorcontrib><creatorcontrib>Chang, Ken</creatorcontrib><creatorcontrib>Cetin-Karayumak, Suheyla</creatorcontrib><creatorcontrib>Dalca, Adrian Vasile</creatorcontrib><creatorcontrib>Eickhoff, Simon</creatorcontrib><creatorcontrib>Fox, Michael</creatorcontrib><creatorcontrib>Franke, Loraine</creatorcontrib><creatorcontrib>Golland, Polina</creatorcontrib><creatorcontrib>Haehn, Daniel</creatorcontrib><creatorcontrib>Iglesias, Juan Eugenio</creatorcontrib><creatorcontrib>O’Donnell, Lauren J.</creatorcontrib><creatorcontrib>Ou, Yangming</creatorcontrib><creatorcontrib>Rathi, Yogesh</creatorcontrib><creatorcontrib>Siddiqi, Shan H.</creatorcontrib><creatorcontrib>Sun, Haoqi</creatorcontrib><creatorcontrib>Westover, M. Brandon</creatorcontrib><creatorcontrib>Whitfield-Gabrieli, Susan</creatorcontrib><creatorcontrib>Gollub, Randy L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Nalini M.</au><au>Harrod, Jordan B.</au><au>Subramanian, Sandya</au><au>Robinson, Mitchell</au><au>Chang, Ken</au><au>Cetin-Karayumak, Suheyla</au><au>Dalca, Adrian Vasile</au><au>Eickhoff, Simon</au><au>Fox, Michael</au><au>Franke, Loraine</au><au>Golland, Polina</au><au>Haehn, Daniel</au><au>Iglesias, Juan Eugenio</au><au>O’Donnell, Lauren J.</au><au>Ou, Yangming</au><au>Rathi, Yogesh</au><au>Siddiqi, Shan H.</au><au>Sun, Haoqi</au><au>Westover, M. Brandon</au><au>Whitfield-Gabrieli, Susan</au><au>Gollub, Randy L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Machine Learning is Powering Neuroimaging to Improve Brain Health</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>20</volume><issue>4</issue><spage>943</spage><epage>964</epage><pages>943-964</pages><issn>1539-2791</issn><issn>1559-0089</issn><eissn>1559-0089</eissn><abstract>This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, “Neuroimaging Indicators of Brain Structure and Function - Closing the Gap Between Research and Clinical Application”, co-hosted by the McCance Center for Brain Health at Mass General Hospital and the MIT HST Neuroimaging Training Program on February 12, 2021. The symposium focused on the potential for machine learning approaches, applied to increasingly large-scale neuroimaging datasets, to transform healthcare delivery and change the trajectory of brain health by addressing brain care earlier in the lifespan. While not exhaustive, this overview uniquely addresses many of the technical challenges from image formation, to analysis and visualization, to synthesis and incorporation into the clinical workflow. Some of the ethical challenges inherent to this work are also explored, as are some of the regulatory requirements for implementation. We seek to educate, motivate, and inspire graduate students, postdoctoral fellows, and early career investigators to contribute to a future where neuroimaging meaningfully contributes to the maintenance of brain health.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35347570</pmid><doi>10.1007/s12021-022-09572-9</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9434-4044</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-2791 |
ispartof | Neuroinformatics (Totowa, N.J.), 2022-10, Vol.20 (4), p.943-964 |
issn | 1539-2791 1559-0089 1559-0089 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9515245 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Bioinformatics Biomedical and Life Sciences Biomedicine Brain - diagnostic imaging Computational Biology/Bioinformatics Computer Appl. in Life Sciences Functional anatomy Humans Image processing Learning algorithms Life span Machine Learning Magnetic Resonance Imaging Medical imaging Neuroimaging Neuroimaging - methods Neurology Neurosciences Review Structure-function relationships |
title | How Machine Learning is Powering Neuroimaging to Improve Brain Health |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Machine%20Learning%20is%20Powering%20Neuroimaging%20to%20Improve%20Brain%20Health&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Singh,%20Nalini%20M.&rft.date=2022-10-01&rft.volume=20&rft.issue=4&rft.spage=943&rft.epage=964&rft.pages=943-964&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-022-09572-9&rft_dat=%3Cproquest_pubme%3E2644936750%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727498957&rft_id=info:pmid/35347570&rfr_iscdi=true |