How Machine Learning is Powering Neuroimaging to Improve Brain Health

This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, “Neu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroinformatics (Totowa, N.J.) N.J.), 2022-10, Vol.20 (4), p.943-964
Hauptverfasser: Singh, Nalini M., Harrod, Jordan B., Subramanian, Sandya, Robinson, Mitchell, Chang, Ken, Cetin-Karayumak, Suheyla, Dalca, Adrian Vasile, Eickhoff, Simon, Fox, Michael, Franke, Loraine, Golland, Polina, Haehn, Daniel, Iglesias, Juan Eugenio, O’Donnell, Lauren J., Ou, Yangming, Rathi, Yogesh, Siddiqi, Shan H., Sun, Haoqi, Westover, M. Brandon, Whitfield-Gabrieli, Susan, Gollub, Randy L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 964
container_issue 4
container_start_page 943
container_title Neuroinformatics (Totowa, N.J.)
container_volume 20
creator Singh, Nalini M.
Harrod, Jordan B.
Subramanian, Sandya
Robinson, Mitchell
Chang, Ken
Cetin-Karayumak, Suheyla
Dalca, Adrian Vasile
Eickhoff, Simon
Fox, Michael
Franke, Loraine
Golland, Polina
Haehn, Daniel
Iglesias, Juan Eugenio
O’Donnell, Lauren J.
Ou, Yangming
Rathi, Yogesh
Siddiqi, Shan H.
Sun, Haoqi
Westover, M. Brandon
Whitfield-Gabrieli, Susan
Gollub, Randy L.
description This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, “Neuroimaging Indicators of Brain Structure and Function - Closing the Gap Between Research and Clinical Application”, co-hosted by the McCance Center for Brain Health at Mass General Hospital and the MIT HST Neuroimaging Training Program on February 12, 2021. The symposium focused on the potential for machine learning approaches, applied to increasingly large-scale neuroimaging datasets, to transform healthcare delivery and change the trajectory of brain health by addressing brain care earlier in the lifespan. While not exhaustive, this overview uniquely addresses many of the technical challenges from image formation, to analysis and visualization, to synthesis and incorporation into the clinical workflow. Some of the ethical challenges inherent to this work are also explored, as are some of the regulatory requirements for implementation. We seek to educate, motivate, and inspire graduate students, postdoctoral fellows, and early career investigators to contribute to a future where neuroimaging meaningfully contributes to the maintenance of brain health.
doi_str_mv 10.1007/s12021-022-09572-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9515245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644936750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c50a5269411e3a27bd2d489820ae0f74d06db26d63ce397548ca34ed3c6ba5e73</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhq2qqFDaF-gBReqll7TjsR3HF6QW0S7S0vYAZ8vrzO4GZePFTkC8PQ5LaemBk8fy598z_hj7wOEzB9BfEkdAXgJiCUZpLM0rdsCVMiVAbV5PtTAlasP32duUrgCw0gBv2L5QQmql4YCdzsJtce78uu2pmJOLfduvijYVv8Mtxan-SWMM7catps0QirPNNoYbKr5F1_bFjFw3rN-xvaXrEr1_XA_Z5ffTi5NZOf_14-zk67z0Usuh9AqcwspIzkk41IsGG1mbGsERLLVsoGoWWDWV8CSMVrL2TkhqhK8WTpEWh-x4l7sdFxtqPPVDdJ3dxtxfvLPBtfb5Sd-u7SrcWKO4QqlywKfHgBiuR0qD3bTJU9e5nsKYLFZSGlFpBRn9-B96FcbY5_EsatTS1PnPM4U7yseQUqTlUzMc7GTJ7izZbMk-WLImXzr6d4ynK3-0ZEDsgLSdHFD8-_YLsfckYpzK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727498957</pqid></control><display><type>article</type><title>How Machine Learning is Powering Neuroimaging to Improve Brain Health</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Singh, Nalini M. ; Harrod, Jordan B. ; Subramanian, Sandya ; Robinson, Mitchell ; Chang, Ken ; Cetin-Karayumak, Suheyla ; Dalca, Adrian Vasile ; Eickhoff, Simon ; Fox, Michael ; Franke, Loraine ; Golland, Polina ; Haehn, Daniel ; Iglesias, Juan Eugenio ; O’Donnell, Lauren J. ; Ou, Yangming ; Rathi, Yogesh ; Siddiqi, Shan H. ; Sun, Haoqi ; Westover, M. Brandon ; Whitfield-Gabrieli, Susan ; Gollub, Randy L.</creator><creatorcontrib>Singh, Nalini M. ; Harrod, Jordan B. ; Subramanian, Sandya ; Robinson, Mitchell ; Chang, Ken ; Cetin-Karayumak, Suheyla ; Dalca, Adrian Vasile ; Eickhoff, Simon ; Fox, Michael ; Franke, Loraine ; Golland, Polina ; Haehn, Daniel ; Iglesias, Juan Eugenio ; O’Donnell, Lauren J. ; Ou, Yangming ; Rathi, Yogesh ; Siddiqi, Shan H. ; Sun, Haoqi ; Westover, M. Brandon ; Whitfield-Gabrieli, Susan ; Gollub, Randy L.</creatorcontrib><description>This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, “Neuroimaging Indicators of Brain Structure and Function - Closing the Gap Between Research and Clinical Application”, co-hosted by the McCance Center for Brain Health at Mass General Hospital and the MIT HST Neuroimaging Training Program on February 12, 2021. The symposium focused on the potential for machine learning approaches, applied to increasingly large-scale neuroimaging datasets, to transform healthcare delivery and change the trajectory of brain health by addressing brain care earlier in the lifespan. While not exhaustive, this overview uniquely addresses many of the technical challenges from image formation, to analysis and visualization, to synthesis and incorporation into the clinical workflow. Some of the ethical challenges inherent to this work are also explored, as are some of the regulatory requirements for implementation. We seek to educate, motivate, and inspire graduate students, postdoctoral fellows, and early career investigators to contribute to a future where neuroimaging meaningfully contributes to the maintenance of brain health.</description><identifier>ISSN: 1539-2791</identifier><identifier>ISSN: 1559-0089</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-022-09572-9</identifier><identifier>PMID: 35347570</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - diagnostic imaging ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Functional anatomy ; Humans ; Image processing ; Learning algorithms ; Life span ; Machine Learning ; Magnetic Resonance Imaging ; Medical imaging ; Neuroimaging ; Neuroimaging - methods ; Neurology ; Neurosciences ; Review ; Structure-function relationships</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2022-10, Vol.20 (4), p.943-964</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c50a5269411e3a27bd2d489820ae0f74d06db26d63ce397548ca34ed3c6ba5e73</citedby><cites>FETCH-LOGICAL-c474t-c50a5269411e3a27bd2d489820ae0f74d06db26d63ce397548ca34ed3c6ba5e73</cites><orcidid>0000-0002-9434-4044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12021-022-09572-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12021-022-09572-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35347570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Nalini M.</creatorcontrib><creatorcontrib>Harrod, Jordan B.</creatorcontrib><creatorcontrib>Subramanian, Sandya</creatorcontrib><creatorcontrib>Robinson, Mitchell</creatorcontrib><creatorcontrib>Chang, Ken</creatorcontrib><creatorcontrib>Cetin-Karayumak, Suheyla</creatorcontrib><creatorcontrib>Dalca, Adrian Vasile</creatorcontrib><creatorcontrib>Eickhoff, Simon</creatorcontrib><creatorcontrib>Fox, Michael</creatorcontrib><creatorcontrib>Franke, Loraine</creatorcontrib><creatorcontrib>Golland, Polina</creatorcontrib><creatorcontrib>Haehn, Daniel</creatorcontrib><creatorcontrib>Iglesias, Juan Eugenio</creatorcontrib><creatorcontrib>O’Donnell, Lauren J.</creatorcontrib><creatorcontrib>Ou, Yangming</creatorcontrib><creatorcontrib>Rathi, Yogesh</creatorcontrib><creatorcontrib>Siddiqi, Shan H.</creatorcontrib><creatorcontrib>Sun, Haoqi</creatorcontrib><creatorcontrib>Westover, M. Brandon</creatorcontrib><creatorcontrib>Whitfield-Gabrieli, Susan</creatorcontrib><creatorcontrib>Gollub, Randy L.</creatorcontrib><title>How Machine Learning is Powering Neuroimaging to Improve Brain Health</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, “Neuroimaging Indicators of Brain Structure and Function - Closing the Gap Between Research and Clinical Application”, co-hosted by the McCance Center for Brain Health at Mass General Hospital and the MIT HST Neuroimaging Training Program on February 12, 2021. The symposium focused on the potential for machine learning approaches, applied to increasingly large-scale neuroimaging datasets, to transform healthcare delivery and change the trajectory of brain health by addressing brain care earlier in the lifespan. While not exhaustive, this overview uniquely addresses many of the technical challenges from image formation, to analysis and visualization, to synthesis and incorporation into the clinical workflow. Some of the ethical challenges inherent to this work are also explored, as are some of the regulatory requirements for implementation. We seek to educate, motivate, and inspire graduate students, postdoctoral fellows, and early career investigators to contribute to a future where neuroimaging meaningfully contributes to the maintenance of brain health.</description><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - diagnostic imaging</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Functional anatomy</subject><subject>Humans</subject><subject>Image processing</subject><subject>Learning algorithms</subject><subject>Life span</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Review</subject><subject>Structure-function relationships</subject><issn>1539-2791</issn><issn>1559-0089</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFO3DAQhq2qqFDaF-gBReqll7TjsR3HF6QW0S7S0vYAZ8vrzO4GZePFTkC8PQ5LaemBk8fy598z_hj7wOEzB9BfEkdAXgJiCUZpLM0rdsCVMiVAbV5PtTAlasP32duUrgCw0gBv2L5QQmql4YCdzsJtce78uu2pmJOLfduvijYVv8Mtxan-SWMM7catps0QirPNNoYbKr5F1_bFjFw3rN-xvaXrEr1_XA_Z5ffTi5NZOf_14-zk67z0Usuh9AqcwspIzkk41IsGG1mbGsERLLVsoGoWWDWV8CSMVrL2TkhqhK8WTpEWh-x4l7sdFxtqPPVDdJ3dxtxfvLPBtfb5Sd-u7SrcWKO4QqlywKfHgBiuR0qD3bTJU9e5nsKYLFZSGlFpBRn9-B96FcbY5_EsatTS1PnPM4U7yseQUqTlUzMc7GTJ7izZbMk-WLImXzr6d4ynK3-0ZEDsgLSdHFD8-_YLsfckYpzK</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Singh, Nalini M.</creator><creator>Harrod, Jordan B.</creator><creator>Subramanian, Sandya</creator><creator>Robinson, Mitchell</creator><creator>Chang, Ken</creator><creator>Cetin-Karayumak, Suheyla</creator><creator>Dalca, Adrian Vasile</creator><creator>Eickhoff, Simon</creator><creator>Fox, Michael</creator><creator>Franke, Loraine</creator><creator>Golland, Polina</creator><creator>Haehn, Daniel</creator><creator>Iglesias, Juan Eugenio</creator><creator>O’Donnell, Lauren J.</creator><creator>Ou, Yangming</creator><creator>Rathi, Yogesh</creator><creator>Siddiqi, Shan H.</creator><creator>Sun, Haoqi</creator><creator>Westover, M. Brandon</creator><creator>Whitfield-Gabrieli, Susan</creator><creator>Gollub, Randy L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9434-4044</orcidid></search><sort><creationdate>20221001</creationdate><title>How Machine Learning is Powering Neuroimaging to Improve Brain Health</title><author>Singh, Nalini M. ; Harrod, Jordan B. ; Subramanian, Sandya ; Robinson, Mitchell ; Chang, Ken ; Cetin-Karayumak, Suheyla ; Dalca, Adrian Vasile ; Eickhoff, Simon ; Fox, Michael ; Franke, Loraine ; Golland, Polina ; Haehn, Daniel ; Iglesias, Juan Eugenio ; O’Donnell, Lauren J. ; Ou, Yangming ; Rathi, Yogesh ; Siddiqi, Shan H. ; Sun, Haoqi ; Westover, M. Brandon ; Whitfield-Gabrieli, Susan ; Gollub, Randy L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c50a5269411e3a27bd2d489820ae0f74d06db26d63ce397548ca34ed3c6ba5e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - diagnostic imaging</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Functional anatomy</topic><topic>Humans</topic><topic>Image processing</topic><topic>Learning algorithms</topic><topic>Life span</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Review</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Nalini M.</creatorcontrib><creatorcontrib>Harrod, Jordan B.</creatorcontrib><creatorcontrib>Subramanian, Sandya</creatorcontrib><creatorcontrib>Robinson, Mitchell</creatorcontrib><creatorcontrib>Chang, Ken</creatorcontrib><creatorcontrib>Cetin-Karayumak, Suheyla</creatorcontrib><creatorcontrib>Dalca, Adrian Vasile</creatorcontrib><creatorcontrib>Eickhoff, Simon</creatorcontrib><creatorcontrib>Fox, Michael</creatorcontrib><creatorcontrib>Franke, Loraine</creatorcontrib><creatorcontrib>Golland, Polina</creatorcontrib><creatorcontrib>Haehn, Daniel</creatorcontrib><creatorcontrib>Iglesias, Juan Eugenio</creatorcontrib><creatorcontrib>O’Donnell, Lauren J.</creatorcontrib><creatorcontrib>Ou, Yangming</creatorcontrib><creatorcontrib>Rathi, Yogesh</creatorcontrib><creatorcontrib>Siddiqi, Shan H.</creatorcontrib><creatorcontrib>Sun, Haoqi</creatorcontrib><creatorcontrib>Westover, M. Brandon</creatorcontrib><creatorcontrib>Whitfield-Gabrieli, Susan</creatorcontrib><creatorcontrib>Gollub, Randy L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Nalini M.</au><au>Harrod, Jordan B.</au><au>Subramanian, Sandya</au><au>Robinson, Mitchell</au><au>Chang, Ken</au><au>Cetin-Karayumak, Suheyla</au><au>Dalca, Adrian Vasile</au><au>Eickhoff, Simon</au><au>Fox, Michael</au><au>Franke, Loraine</au><au>Golland, Polina</au><au>Haehn, Daniel</au><au>Iglesias, Juan Eugenio</au><au>O’Donnell, Lauren J.</au><au>Ou, Yangming</au><au>Rathi, Yogesh</au><au>Siddiqi, Shan H.</au><au>Sun, Haoqi</au><au>Westover, M. Brandon</au><au>Whitfield-Gabrieli, Susan</au><au>Gollub, Randy L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Machine Learning is Powering Neuroimaging to Improve Brain Health</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>20</volume><issue>4</issue><spage>943</spage><epage>964</epage><pages>943-964</pages><issn>1539-2791</issn><issn>1559-0089</issn><eissn>1559-0089</eissn><abstract>This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, “Neuroimaging Indicators of Brain Structure and Function - Closing the Gap Between Research and Clinical Application”, co-hosted by the McCance Center for Brain Health at Mass General Hospital and the MIT HST Neuroimaging Training Program on February 12, 2021. The symposium focused on the potential for machine learning approaches, applied to increasingly large-scale neuroimaging datasets, to transform healthcare delivery and change the trajectory of brain health by addressing brain care earlier in the lifespan. While not exhaustive, this overview uniquely addresses many of the technical challenges from image formation, to analysis and visualization, to synthesis and incorporation into the clinical workflow. Some of the ethical challenges inherent to this work are also explored, as are some of the regulatory requirements for implementation. We seek to educate, motivate, and inspire graduate students, postdoctoral fellows, and early career investigators to contribute to a future where neuroimaging meaningfully contributes to the maintenance of brain health.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35347570</pmid><doi>10.1007/s12021-022-09572-9</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9434-4044</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-2791
ispartof Neuroinformatics (Totowa, N.J.), 2022-10, Vol.20 (4), p.943-964
issn 1539-2791
1559-0089
1559-0089
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9515245
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Bioinformatics
Biomedical and Life Sciences
Biomedicine
Brain - diagnostic imaging
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Functional anatomy
Humans
Image processing
Learning algorithms
Life span
Machine Learning
Magnetic Resonance Imaging
Medical imaging
Neuroimaging
Neuroimaging - methods
Neurology
Neurosciences
Review
Structure-function relationships
title How Machine Learning is Powering Neuroimaging to Improve Brain Health
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Machine%20Learning%20is%20Powering%20Neuroimaging%20to%20Improve%20Brain%20Health&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Singh,%20Nalini%20M.&rft.date=2022-10-01&rft.volume=20&rft.issue=4&rft.spage=943&rft.epage=964&rft.pages=943-964&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-022-09572-9&rft_dat=%3Cproquest_pubme%3E2644936750%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727498957&rft_id=info:pmid/35347570&rfr_iscdi=true