Virtual screening for small-molecule pathway regulators by image-profile matching

Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell systems 2022-09, Vol.13 (9), p.724-736.e9
Hauptverfasser: Rohban, Mohammad H., Fuller, Ashley M., Tan, Ceryl, Goldstein, Jonathan T., Syangtan, Deepsing, Gutnick, Amos, DeVine, Ann, Nijsure, Madhura P., Rigby, Megan, Sacher, Joshua R., Corsello, Steven M., Peppler, Grace B., Bogaczynska, Marta, Boghossian, Andrew, Ciotti, Gabrielle E., Hands, Allison T., Mekareeya, Aroonroj, Doan, Minh, Gale, Jennifer P., Derynck, Rik, Turbyville, Thomas, Boerckel, Joel D., Singh, Shantanu, Kiessling, Laura L., Schwarz, Thomas L., Varelas, Xaralabos, Wagner, Florence F., Kafri, Ran, Eisinger-Mathason, T.S. Karin, Carpenter, Anne E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 736.e9
container_issue 9
container_start_page 724
container_title Cell systems
container_volume 13
creator Rohban, Mohammad H.
Fuller, Ashley M.
Tan, Ceryl
Goldstein, Jonathan T.
Syangtan, Deepsing
Gutnick, Amos
DeVine, Ann
Nijsure, Madhura P.
Rigby, Megan
Sacher, Joshua R.
Corsello, Steven M.
Peppler, Grace B.
Bogaczynska, Marta
Boghossian, Andrew
Ciotti, Gabrielle E.
Hands, Allison T.
Mekareeya, Aroonroj
Doan, Minh
Gale, Jennifer P.
Derynck, Rik
Turbyville, Thomas
Boerckel, Joel D.
Singh, Shantanu
Kiessling, Laura L.
Schwarz, Thomas L.
Varelas, Xaralabos
Wagner, Florence F.
Kafri, Ran
Eisinger-Mathason, T.S. Karin
Carpenter, Anne E.
description Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments customized to each disease. Here, our uncustomized, virtual, profile-based screening approach instead identifies compounds that match to pathways based on the phenotypic information in public cell image data, created using the Cell Painting assay. Our straightforward correlation-based computational strategy retrospectively uncovered the expected, known small-molecule regulators for 32% of positive-control gene queries. In prospective, discovery mode, we efficiently identified new compounds related to three query genes and validated them in subsequent gene-relevant assays, including compounds that phenocopy or pheno-oppose YAP1 overexpression and kill a Yap1-dependent sarcoma cell line. This image-profile-based approach could replace many customized labor- and resource-intensive screens and accelerate the discovery of biologically and therapeutically useful compounds. [Display omitted] •Compounds impacting particular genes’ function are highly sought•Most chemicals and overexpressed genes impact cell morphology in the Cell Painting assay•Matching these image profiles can find chemicals that impact a particular gene’s function•This virtual screen using public data found new chemical regulators of several pathways If a chemical compound and a gene overexpression yield the same cell morphology in the microscopy-based assay Cell Painting, then they are likely to impact the same functions. This principle is exploited to retrieve useful compounds for particular query genes in public Cell Painting datasets.
doi_str_mv 10.1016/j.cels.2022.08.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9509476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405471222003301</els_id><sourcerecordid>2709740836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-9940e986a80c7495909371fb135056ab81f95bf4976c0e382ee43c1783337dc23</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpaUKSP9BD8bEXO6Mvy4JSKCH9gEAJNLkKWTve1SJbW8lO2H9fLZsu7aWnEaPnfWeYl5B3FBoKtL3eNg5Dbhgw1kDXAPBX5JwJkLVQDF6f3pSdkauctwBAhS5N9pac8RakYlKdk_tHn-bFhiq7hDj5aV0NMVV5tCHUYwzoloDVzs6bZ7uvEq6XYOeYctXvKz_aNda7FAdfmNHOblP0l-TNYEPGq5d6QR6-3P68-Vbf_fj6_ebzXe2ElHOttQDUXWs7cEpoqUFzRYeecgmytX1HBy37QWjVOkDeMUTBHVUd51ytHOMX5NPRd7f0I64cTnOywexSWSvtTbTe_Psz-Y1ZxyejJWih2mLw4cUgxV8L5tmMPpejBjthXLJhCrQS0PEDyo6oSzHnhMNpDAVziMNszSEOc4jDQGdKHEX0_u8FT5I_xy_AxyNQlPjkMZnsPE4OVz6hm80q-v_5_wbzgJxx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709740836</pqid></control><display><type>article</type><title>Virtual screening for small-molecule pathway regulators by image-profile matching</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Rohban, Mohammad H. ; Fuller, Ashley M. ; Tan, Ceryl ; Goldstein, Jonathan T. ; Syangtan, Deepsing ; Gutnick, Amos ; DeVine, Ann ; Nijsure, Madhura P. ; Rigby, Megan ; Sacher, Joshua R. ; Corsello, Steven M. ; Peppler, Grace B. ; Bogaczynska, Marta ; Boghossian, Andrew ; Ciotti, Gabrielle E. ; Hands, Allison T. ; Mekareeya, Aroonroj ; Doan, Minh ; Gale, Jennifer P. ; Derynck, Rik ; Turbyville, Thomas ; Boerckel, Joel D. ; Singh, Shantanu ; Kiessling, Laura L. ; Schwarz, Thomas L. ; Varelas, Xaralabos ; Wagner, Florence F. ; Kafri, Ran ; Eisinger-Mathason, T.S. Karin ; Carpenter, Anne E.</creator><creatorcontrib>Rohban, Mohammad H. ; Fuller, Ashley M. ; Tan, Ceryl ; Goldstein, Jonathan T. ; Syangtan, Deepsing ; Gutnick, Amos ; DeVine, Ann ; Nijsure, Madhura P. ; Rigby, Megan ; Sacher, Joshua R. ; Corsello, Steven M. ; Peppler, Grace B. ; Bogaczynska, Marta ; Boghossian, Andrew ; Ciotti, Gabrielle E. ; Hands, Allison T. ; Mekareeya, Aroonroj ; Doan, Minh ; Gale, Jennifer P. ; Derynck, Rik ; Turbyville, Thomas ; Boerckel, Joel D. ; Singh, Shantanu ; Kiessling, Laura L. ; Schwarz, Thomas L. ; Varelas, Xaralabos ; Wagner, Florence F. ; Kafri, Ran ; Eisinger-Mathason, T.S. Karin ; Carpenter, Anne E.</creatorcontrib><description>Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments customized to each disease. Here, our uncustomized, virtual, profile-based screening approach instead identifies compounds that match to pathways based on the phenotypic information in public cell image data, created using the Cell Painting assay. Our straightforward correlation-based computational strategy retrospectively uncovered the expected, known small-molecule regulators for 32% of positive-control gene queries. In prospective, discovery mode, we efficiently identified new compounds related to three query genes and validated them in subsequent gene-relevant assays, including compounds that phenocopy or pheno-oppose YAP1 overexpression and kill a Yap1-dependent sarcoma cell line. This image-profile-based approach could replace many customized labor- and resource-intensive screens and accelerate the discovery of biologically and therapeutically useful compounds. [Display omitted] •Compounds impacting particular genes’ function are highly sought•Most chemicals and overexpressed genes impact cell morphology in the Cell Painting assay•Matching these image profiles can find chemicals that impact a particular gene’s function•This virtual screen using public data found new chemical regulators of several pathways If a chemical compound and a gene overexpression yield the same cell morphology in the microscopy-based assay Cell Painting, then they are likely to impact the same functions. This principle is exploited to retrieve useful compounds for particular query genes in public Cell Painting datasets.</description><identifier>ISSN: 2405-4712</identifier><identifier>ISSN: 2405-4720</identifier><identifier>EISSN: 2405-4720</identifier><identifier>DOI: 10.1016/j.cels.2022.08.003</identifier><identifier>PMID: 36057257</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cell Line ; computational drug discovery ; drug screening ; Hippo/Yap1 pathway ; image-based profiling ; Prospective Studies ; Retrospective Studies ; virtual screening</subject><ispartof>Cell systems, 2022-09, Vol.13 (9), p.724-736.e9</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-9940e986a80c7495909371fb135056ab81f95bf4976c0e382ee43c1783337dc23</citedby><cites>FETCH-LOGICAL-c455t-9940e986a80c7495909371fb135056ab81f95bf4976c0e382ee43c1783337dc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36057257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rohban, Mohammad H.</creatorcontrib><creatorcontrib>Fuller, Ashley M.</creatorcontrib><creatorcontrib>Tan, Ceryl</creatorcontrib><creatorcontrib>Goldstein, Jonathan T.</creatorcontrib><creatorcontrib>Syangtan, Deepsing</creatorcontrib><creatorcontrib>Gutnick, Amos</creatorcontrib><creatorcontrib>DeVine, Ann</creatorcontrib><creatorcontrib>Nijsure, Madhura P.</creatorcontrib><creatorcontrib>Rigby, Megan</creatorcontrib><creatorcontrib>Sacher, Joshua R.</creatorcontrib><creatorcontrib>Corsello, Steven M.</creatorcontrib><creatorcontrib>Peppler, Grace B.</creatorcontrib><creatorcontrib>Bogaczynska, Marta</creatorcontrib><creatorcontrib>Boghossian, Andrew</creatorcontrib><creatorcontrib>Ciotti, Gabrielle E.</creatorcontrib><creatorcontrib>Hands, Allison T.</creatorcontrib><creatorcontrib>Mekareeya, Aroonroj</creatorcontrib><creatorcontrib>Doan, Minh</creatorcontrib><creatorcontrib>Gale, Jennifer P.</creatorcontrib><creatorcontrib>Derynck, Rik</creatorcontrib><creatorcontrib>Turbyville, Thomas</creatorcontrib><creatorcontrib>Boerckel, Joel D.</creatorcontrib><creatorcontrib>Singh, Shantanu</creatorcontrib><creatorcontrib>Kiessling, Laura L.</creatorcontrib><creatorcontrib>Schwarz, Thomas L.</creatorcontrib><creatorcontrib>Varelas, Xaralabos</creatorcontrib><creatorcontrib>Wagner, Florence F.</creatorcontrib><creatorcontrib>Kafri, Ran</creatorcontrib><creatorcontrib>Eisinger-Mathason, T.S. Karin</creatorcontrib><creatorcontrib>Carpenter, Anne E.</creatorcontrib><title>Virtual screening for small-molecule pathway regulators by image-profile matching</title><title>Cell systems</title><addtitle>Cell Syst</addtitle><description>Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments customized to each disease. Here, our uncustomized, virtual, profile-based screening approach instead identifies compounds that match to pathways based on the phenotypic information in public cell image data, created using the Cell Painting assay. Our straightforward correlation-based computational strategy retrospectively uncovered the expected, known small-molecule regulators for 32% of positive-control gene queries. In prospective, discovery mode, we efficiently identified new compounds related to three query genes and validated them in subsequent gene-relevant assays, including compounds that phenocopy or pheno-oppose YAP1 overexpression and kill a Yap1-dependent sarcoma cell line. This image-profile-based approach could replace many customized labor- and resource-intensive screens and accelerate the discovery of biologically and therapeutically useful compounds. [Display omitted] •Compounds impacting particular genes’ function are highly sought•Most chemicals and overexpressed genes impact cell morphology in the Cell Painting assay•Matching these image profiles can find chemicals that impact a particular gene’s function•This virtual screen using public data found new chemical regulators of several pathways If a chemical compound and a gene overexpression yield the same cell morphology in the microscopy-based assay Cell Painting, then they are likely to impact the same functions. This principle is exploited to retrieve useful compounds for particular query genes in public Cell Painting datasets.</description><subject>Cell Line</subject><subject>computational drug discovery</subject><subject>drug screening</subject><subject>Hippo/Yap1 pathway</subject><subject>image-based profiling</subject><subject>Prospective Studies</subject><subject>Retrospective Studies</subject><subject>virtual screening</subject><issn>2405-4712</issn><issn>2405-4720</issn><issn>2405-4720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAQhkVpaUKSP9BD8bEXO6Mvy4JSKCH9gEAJNLkKWTve1SJbW8lO2H9fLZsu7aWnEaPnfWeYl5B3FBoKtL3eNg5Dbhgw1kDXAPBX5JwJkLVQDF6f3pSdkauctwBAhS5N9pac8RakYlKdk_tHn-bFhiq7hDj5aV0NMVV5tCHUYwzoloDVzs6bZ7uvEq6XYOeYctXvKz_aNda7FAdfmNHOblP0l-TNYEPGq5d6QR6-3P68-Vbf_fj6_ebzXe2ElHOttQDUXWs7cEpoqUFzRYeecgmytX1HBy37QWjVOkDeMUTBHVUd51ytHOMX5NPRd7f0I64cTnOywexSWSvtTbTe_Psz-Y1ZxyejJWih2mLw4cUgxV8L5tmMPpejBjthXLJhCrQS0PEDyo6oSzHnhMNpDAVziMNszSEOc4jDQGdKHEX0_u8FT5I_xy_AxyNQlPjkMZnsPE4OVz6hm80q-v_5_wbzgJxx</recordid><startdate>20220921</startdate><enddate>20220921</enddate><creator>Rohban, Mohammad H.</creator><creator>Fuller, Ashley M.</creator><creator>Tan, Ceryl</creator><creator>Goldstein, Jonathan T.</creator><creator>Syangtan, Deepsing</creator><creator>Gutnick, Amos</creator><creator>DeVine, Ann</creator><creator>Nijsure, Madhura P.</creator><creator>Rigby, Megan</creator><creator>Sacher, Joshua R.</creator><creator>Corsello, Steven M.</creator><creator>Peppler, Grace B.</creator><creator>Bogaczynska, Marta</creator><creator>Boghossian, Andrew</creator><creator>Ciotti, Gabrielle E.</creator><creator>Hands, Allison T.</creator><creator>Mekareeya, Aroonroj</creator><creator>Doan, Minh</creator><creator>Gale, Jennifer P.</creator><creator>Derynck, Rik</creator><creator>Turbyville, Thomas</creator><creator>Boerckel, Joel D.</creator><creator>Singh, Shantanu</creator><creator>Kiessling, Laura L.</creator><creator>Schwarz, Thomas L.</creator><creator>Varelas, Xaralabos</creator><creator>Wagner, Florence F.</creator><creator>Kafri, Ran</creator><creator>Eisinger-Mathason, T.S. Karin</creator><creator>Carpenter, Anne E.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220921</creationdate><title>Virtual screening for small-molecule pathway regulators by image-profile matching</title><author>Rohban, Mohammad H. ; Fuller, Ashley M. ; Tan, Ceryl ; Goldstein, Jonathan T. ; Syangtan, Deepsing ; Gutnick, Amos ; DeVine, Ann ; Nijsure, Madhura P. ; Rigby, Megan ; Sacher, Joshua R. ; Corsello, Steven M. ; Peppler, Grace B. ; Bogaczynska, Marta ; Boghossian, Andrew ; Ciotti, Gabrielle E. ; Hands, Allison T. ; Mekareeya, Aroonroj ; Doan, Minh ; Gale, Jennifer P. ; Derynck, Rik ; Turbyville, Thomas ; Boerckel, Joel D. ; Singh, Shantanu ; Kiessling, Laura L. ; Schwarz, Thomas L. ; Varelas, Xaralabos ; Wagner, Florence F. ; Kafri, Ran ; Eisinger-Mathason, T.S. Karin ; Carpenter, Anne E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-9940e986a80c7495909371fb135056ab81f95bf4976c0e382ee43c1783337dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cell Line</topic><topic>computational drug discovery</topic><topic>drug screening</topic><topic>Hippo/Yap1 pathway</topic><topic>image-based profiling</topic><topic>Prospective Studies</topic><topic>Retrospective Studies</topic><topic>virtual screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohban, Mohammad H.</creatorcontrib><creatorcontrib>Fuller, Ashley M.</creatorcontrib><creatorcontrib>Tan, Ceryl</creatorcontrib><creatorcontrib>Goldstein, Jonathan T.</creatorcontrib><creatorcontrib>Syangtan, Deepsing</creatorcontrib><creatorcontrib>Gutnick, Amos</creatorcontrib><creatorcontrib>DeVine, Ann</creatorcontrib><creatorcontrib>Nijsure, Madhura P.</creatorcontrib><creatorcontrib>Rigby, Megan</creatorcontrib><creatorcontrib>Sacher, Joshua R.</creatorcontrib><creatorcontrib>Corsello, Steven M.</creatorcontrib><creatorcontrib>Peppler, Grace B.</creatorcontrib><creatorcontrib>Bogaczynska, Marta</creatorcontrib><creatorcontrib>Boghossian, Andrew</creatorcontrib><creatorcontrib>Ciotti, Gabrielle E.</creatorcontrib><creatorcontrib>Hands, Allison T.</creatorcontrib><creatorcontrib>Mekareeya, Aroonroj</creatorcontrib><creatorcontrib>Doan, Minh</creatorcontrib><creatorcontrib>Gale, Jennifer P.</creatorcontrib><creatorcontrib>Derynck, Rik</creatorcontrib><creatorcontrib>Turbyville, Thomas</creatorcontrib><creatorcontrib>Boerckel, Joel D.</creatorcontrib><creatorcontrib>Singh, Shantanu</creatorcontrib><creatorcontrib>Kiessling, Laura L.</creatorcontrib><creatorcontrib>Schwarz, Thomas L.</creatorcontrib><creatorcontrib>Varelas, Xaralabos</creatorcontrib><creatorcontrib>Wagner, Florence F.</creatorcontrib><creatorcontrib>Kafri, Ran</creatorcontrib><creatorcontrib>Eisinger-Mathason, T.S. Karin</creatorcontrib><creatorcontrib>Carpenter, Anne E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohban, Mohammad H.</au><au>Fuller, Ashley M.</au><au>Tan, Ceryl</au><au>Goldstein, Jonathan T.</au><au>Syangtan, Deepsing</au><au>Gutnick, Amos</au><au>DeVine, Ann</au><au>Nijsure, Madhura P.</au><au>Rigby, Megan</au><au>Sacher, Joshua R.</au><au>Corsello, Steven M.</au><au>Peppler, Grace B.</au><au>Bogaczynska, Marta</au><au>Boghossian, Andrew</au><au>Ciotti, Gabrielle E.</au><au>Hands, Allison T.</au><au>Mekareeya, Aroonroj</au><au>Doan, Minh</au><au>Gale, Jennifer P.</au><au>Derynck, Rik</au><au>Turbyville, Thomas</au><au>Boerckel, Joel D.</au><au>Singh, Shantanu</au><au>Kiessling, Laura L.</au><au>Schwarz, Thomas L.</au><au>Varelas, Xaralabos</au><au>Wagner, Florence F.</au><au>Kafri, Ran</au><au>Eisinger-Mathason, T.S. Karin</au><au>Carpenter, Anne E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual screening for small-molecule pathway regulators by image-profile matching</atitle><jtitle>Cell systems</jtitle><addtitle>Cell Syst</addtitle><date>2022-09-21</date><risdate>2022</risdate><volume>13</volume><issue>9</issue><spage>724</spage><epage>736.e9</epage><pages>724-736.e9</pages><issn>2405-4712</issn><issn>2405-4720</issn><eissn>2405-4720</eissn><abstract>Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments customized to each disease. Here, our uncustomized, virtual, profile-based screening approach instead identifies compounds that match to pathways based on the phenotypic information in public cell image data, created using the Cell Painting assay. Our straightforward correlation-based computational strategy retrospectively uncovered the expected, known small-molecule regulators for 32% of positive-control gene queries. In prospective, discovery mode, we efficiently identified new compounds related to three query genes and validated them in subsequent gene-relevant assays, including compounds that phenocopy or pheno-oppose YAP1 overexpression and kill a Yap1-dependent sarcoma cell line. This image-profile-based approach could replace many customized labor- and resource-intensive screens and accelerate the discovery of biologically and therapeutically useful compounds. [Display omitted] •Compounds impacting particular genes’ function are highly sought•Most chemicals and overexpressed genes impact cell morphology in the Cell Painting assay•Matching these image profiles can find chemicals that impact a particular gene’s function•This virtual screen using public data found new chemical regulators of several pathways If a chemical compound and a gene overexpression yield the same cell morphology in the microscopy-based assay Cell Painting, then they are likely to impact the same functions. This principle is exploited to retrieve useful compounds for particular query genes in public Cell Painting datasets.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36057257</pmid><doi>10.1016/j.cels.2022.08.003</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-4712
ispartof Cell systems, 2022-09, Vol.13 (9), p.724-736.e9
issn 2405-4712
2405-4720
2405-4720
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9509476
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Cell Line
computational drug discovery
drug screening
Hippo/Yap1 pathway
image-based profiling
Prospective Studies
Retrospective Studies
virtual screening
title Virtual screening for small-molecule pathway regulators by image-profile matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20screening%20for%20small-molecule%20pathway%20regulators%20by%20image-profile%20matching&rft.jtitle=Cell%20systems&rft.au=Rohban,%20Mohammad%20H.&rft.date=2022-09-21&rft.volume=13&rft.issue=9&rft.spage=724&rft.epage=736.e9&rft.pages=724-736.e9&rft.issn=2405-4712&rft.eissn=2405-4720&rft_id=info:doi/10.1016/j.cels.2022.08.003&rft_dat=%3Cproquest_pubme%3E2709740836%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709740836&rft_id=info:pmid/36057257&rft_els_id=S2405471222003301&rfr_iscdi=true