Magneto-Thermoelastic Response in an Infinite Medium with a Spherical Hole in the Context of High Order Time-Derivatives and Triple-Phase-Lag Model
The article presents the interactions of magneto-thermoelastic effects in an isotropic material with a spherical cavity. The spherical cavity is expected to be tractionless and subjected to both heat and magnetic fields. The motion equation contains the Lorentz force. Laplace’s transformation method...
Gespeichert in:
Veröffentlicht in: | Materials 2022-09, Vol.15 (18), p.6256 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | 6256 |
container_title | Materials |
container_volume | 15 |
creator | Allehaibi, Ashraf M. Zenkour, Ashraf M. |
description | The article presents the interactions of magneto-thermoelastic effects in an isotropic material with a spherical cavity. The spherical cavity is expected to be tractionless and subjected to both heat and magnetic fields. The motion equation contains the Lorentz force. Laplace’s transformation methodology is used with a refined multi-time-derivative triple-phase-lag thermoelasticity theory to develop the generalized magneto-thermoelastic coupled solution. Many results were obtained to serve as benchmarks for future comparisons. The effects of time, magnetic field, and electric permittivity under the thermal environment were investigated. |
doi_str_mv | 10.3390/ma15186256 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9505427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745739565</galeid><sourcerecordid>A745739565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-2ddf9e11774f0ffe63f867557627351399babfdfd29f578210054e0a5fd240423</originalsourceid><addsrcrecordid>eNpdks9u1DAQxiMEotXSC09giQtCSont2I4vSNUW2Eq7KoLlbHmTceIqsYPtLPAcvDAuW_HPPng08_u-8UhTFM9xdUmprF5PGjPccML4o-IcS8lLLOv68V_xWXER412VD6W4IfJpcUY5rinj4rz4sdO9g-TL_QBh8jDqmGyLPkKcvYuArEPaoRtnrLMJ0A46u0zoq00D0ujTnEW21SPa-PEXmwZAa-8SfEvIG7Sx_YBuQwcB7e0E5XXGjzrZI8Rs26F9sPMI5YdBRyi3ukc738H4rHhi9Bjh4uFdFZ_fvd2vN-X29v3N-mpbtjUhqSRdZyRgLERtKmOAU9NwwZjgRFCGqZQHfTCd6Yg0TDQEVxWrodIsZ-qqJnRVvDn5zsthgq4Fl4Ie1RzspMN35bVV_1acHVTvj0qy7JSbrIqXDwbBf1kgJjXZ2MI4agd-iYoILHgj6wZn9MV_6J1fgsvj3VOcZYTxTF2eqF6PoKwzPvdt8-1gsq13YGzOX4maCSoZZ1nw6iRog48xgPn9e1yp-_1Qf_aD_gSssavb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716581356</pqid></control><display><type>article</type><title>Magneto-Thermoelastic Response in an Infinite Medium with a Spherical Hole in the Context of High Order Time-Derivatives and Triple-Phase-Lag Model</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Allehaibi, Ashraf M. ; Zenkour, Ashraf M.</creator><creatorcontrib>Allehaibi, Ashraf M. ; Zenkour, Ashraf M.</creatorcontrib><description>The article presents the interactions of magneto-thermoelastic effects in an isotropic material with a spherical cavity. The spherical cavity is expected to be tractionless and subjected to both heat and magnetic fields. The motion equation contains the Lorentz force. Laplace’s transformation methodology is used with a refined multi-time-derivative triple-phase-lag thermoelasticity theory to develop the generalized magneto-thermoelastic coupled solution. Many results were obtained to serve as benchmarks for future comparisons. The effects of time, magnetic field, and electric permittivity under the thermal environment were investigated.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15186256</identifier><identifier>PMID: 36143567</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Energy dissipation ; Equations of motion ; Heat transfer ; Hypotheses ; Isotropic material ; Laplace transformation ; Lorentz force ; Lorentz transformations ; Magnetic fields ; Materials research ; Measurement ; Phase lag ; Propagation ; Thermal environments ; Thermoelasticity</subject><ispartof>Materials, 2022-09, Vol.15 (18), p.6256</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-2ddf9e11774f0ffe63f867557627351399babfdfd29f578210054e0a5fd240423</citedby><cites>FETCH-LOGICAL-c422t-2ddf9e11774f0ffe63f867557627351399babfdfd29f578210054e0a5fd240423</cites><orcidid>0000-0002-0883-8073 ; 0000-0002-3372-2558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505427/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505427/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Allehaibi, Ashraf M.</creatorcontrib><creatorcontrib>Zenkour, Ashraf M.</creatorcontrib><title>Magneto-Thermoelastic Response in an Infinite Medium with a Spherical Hole in the Context of High Order Time-Derivatives and Triple-Phase-Lag Model</title><title>Materials</title><description>The article presents the interactions of magneto-thermoelastic effects in an isotropic material with a spherical cavity. The spherical cavity is expected to be tractionless and subjected to both heat and magnetic fields. The motion equation contains the Lorentz force. Laplace’s transformation methodology is used with a refined multi-time-derivative triple-phase-lag thermoelasticity theory to develop the generalized magneto-thermoelastic coupled solution. Many results were obtained to serve as benchmarks for future comparisons. The effects of time, magnetic field, and electric permittivity under the thermal environment were investigated.</description><subject>Energy dissipation</subject><subject>Equations of motion</subject><subject>Heat transfer</subject><subject>Hypotheses</subject><subject>Isotropic material</subject><subject>Laplace transformation</subject><subject>Lorentz force</subject><subject>Lorentz transformations</subject><subject>Magnetic fields</subject><subject>Materials research</subject><subject>Measurement</subject><subject>Phase lag</subject><subject>Propagation</subject><subject>Thermal environments</subject><subject>Thermoelasticity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdks9u1DAQxiMEotXSC09giQtCSont2I4vSNUW2Eq7KoLlbHmTceIqsYPtLPAcvDAuW_HPPng08_u-8UhTFM9xdUmprF5PGjPccML4o-IcS8lLLOv68V_xWXER412VD6W4IfJpcUY5rinj4rz4sdO9g-TL_QBh8jDqmGyLPkKcvYuArEPaoRtnrLMJ0A46u0zoq00D0ujTnEW21SPa-PEXmwZAa-8SfEvIG7Sx_YBuQwcB7e0E5XXGjzrZI8Rs26F9sPMI5YdBRyi3ukc738H4rHhi9Bjh4uFdFZ_fvd2vN-X29v3N-mpbtjUhqSRdZyRgLERtKmOAU9NwwZjgRFCGqZQHfTCd6Yg0TDQEVxWrodIsZ-qqJnRVvDn5zsthgq4Fl4Ie1RzspMN35bVV_1acHVTvj0qy7JSbrIqXDwbBf1kgJjXZ2MI4agd-iYoILHgj6wZn9MV_6J1fgsvj3VOcZYTxTF2eqF6PoKwzPvdt8-1gsq13YGzOX4maCSoZZ1nw6iRog48xgPn9e1yp-_1Qf_aD_gSssavb</recordid><startdate>20220908</startdate><enddate>20220908</enddate><creator>Allehaibi, Ashraf M.</creator><creator>Zenkour, Ashraf M.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0883-8073</orcidid><orcidid>https://orcid.org/0000-0002-3372-2558</orcidid></search><sort><creationdate>20220908</creationdate><title>Magneto-Thermoelastic Response in an Infinite Medium with a Spherical Hole in the Context of High Order Time-Derivatives and Triple-Phase-Lag Model</title><author>Allehaibi, Ashraf M. ; Zenkour, Ashraf M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-2ddf9e11774f0ffe63f867557627351399babfdfd29f578210054e0a5fd240423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy dissipation</topic><topic>Equations of motion</topic><topic>Heat transfer</topic><topic>Hypotheses</topic><topic>Isotropic material</topic><topic>Laplace transformation</topic><topic>Lorentz force</topic><topic>Lorentz transformations</topic><topic>Magnetic fields</topic><topic>Materials research</topic><topic>Measurement</topic><topic>Phase lag</topic><topic>Propagation</topic><topic>Thermal environments</topic><topic>Thermoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allehaibi, Ashraf M.</creatorcontrib><creatorcontrib>Zenkour, Ashraf M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allehaibi, Ashraf M.</au><au>Zenkour, Ashraf M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magneto-Thermoelastic Response in an Infinite Medium with a Spherical Hole in the Context of High Order Time-Derivatives and Triple-Phase-Lag Model</atitle><jtitle>Materials</jtitle><date>2022-09-08</date><risdate>2022</risdate><volume>15</volume><issue>18</issue><spage>6256</spage><pages>6256-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The article presents the interactions of magneto-thermoelastic effects in an isotropic material with a spherical cavity. The spherical cavity is expected to be tractionless and subjected to both heat and magnetic fields. The motion equation contains the Lorentz force. Laplace’s transformation methodology is used with a refined multi-time-derivative triple-phase-lag thermoelasticity theory to develop the generalized magneto-thermoelastic coupled solution. Many results were obtained to serve as benchmarks for future comparisons. The effects of time, magnetic field, and electric permittivity under the thermal environment were investigated.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36143567</pmid><doi>10.3390/ma15186256</doi><orcidid>https://orcid.org/0000-0002-0883-8073</orcidid><orcidid>https://orcid.org/0000-0002-3372-2558</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-09, Vol.15 (18), p.6256 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9505427 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Energy dissipation Equations of motion Heat transfer Hypotheses Isotropic material Laplace transformation Lorentz force Lorentz transformations Magnetic fields Materials research Measurement Phase lag Propagation Thermal environments Thermoelasticity |
title | Magneto-Thermoelastic Response in an Infinite Medium with a Spherical Hole in the Context of High Order Time-Derivatives and Triple-Phase-Lag Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magneto-Thermoelastic%20Response%20in%20an%20Infinite%20Medium%20with%20a%20Spherical%20Hole%20in%20the%20Context%20of%20High%20Order%20Time-Derivatives%20and%20Triple-Phase-Lag%20Model&rft.jtitle=Materials&rft.au=Allehaibi,%20Ashraf%20M.&rft.date=2022-09-08&rft.volume=15&rft.issue=18&rft.spage=6256&rft.pages=6256-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15186256&rft_dat=%3Cgale_pubme%3EA745739565%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716581356&rft_id=info:pmid/36143567&rft_galeid=A745739565&rfr_iscdi=true |