Enhanced Sensing Capacity of Terahertz Triple-Band Metamaterials Absorber Based on Pythagorean Fractal Geometry
A new design of a triple band perfect metamaterial absorber based on Pythagorean fractal geometry is proposed and analyzed for terahertz sensing applications. The proposed design showed an enhanced sensing performance and achieved three intensive peaks at 33.93, 36.27, and 38.39 THz, corresponding t...
Gespeichert in:
Veröffentlicht in: | Materials 2022-09, Vol.15 (18), p.6364 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | 6364 |
container_title | Materials |
container_volume | 15 |
creator | Mazare, Alin Gheorghita Abdulkarim, Yadgar I Karim, Ayoub Sabir Bakır, Mehmet Taouzari, Mohamed Muhammadsharif, Fahmi F Appasani, Bhargav Altıntaş, Olcay Karaaslan, Muharrem Bizon, Nicu |
description | A new design of a triple band perfect metamaterial absorber based on Pythagorean fractal geometry is proposed and analyzed for terahertz sensing applications. The proposed design showed an enhanced sensing performance and achieved three intensive peaks at 33.93, 36.27, and 38.39 THz, corresponding to the absorptivity of 98.5%, 99.3%, and 99.6%, respectively. Due to the symmetrical nature of the recommended design, the structure exhibited the characteristics of independency on the incident wave angles. Furthermore, a parametric study was performed to show the effects of the change in substrate type, resonator material, and substrate thickness on the absorption spectrum. At a fixed analyte thickness (0.5 μm), the resonance frequency of the design was found to be sensitive to the refractive index of the surrounding medium. The proposed design presented three ultra-sensitive responses of 1730, 1590, and 2050 GHz/RIU with the figure of merit (FoM) of 3.20, 1.54, and 4.28, respectively, when the refractive index was changed from 1.0 to 1.4. Additionally, the metamaterial sensor showed a sensitivity of 1230, 2270, and 1580 GHz/μm at the three resonance frequencies, respectively, when it was utilized for the detection of thickness variation at a fixed analyte refractive index (RI) of 1.4. As long as the RI of the biomedical samples is between 1.3 and 1.4, the proposed sensor can be used for biomedical applications. |
doi_str_mv | 10.3390/ma15186364 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9504888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745739673</galeid><sourcerecordid>A745739673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-8626260ded067acd24e66fc5af0033cb0a7922a561236bc060aade775b845f03</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhgdRbKm98QdIwBsRpiaTr5kbYbv0Q6gouPfhTObMbspMsiZZYf31Ztm2Vs-5SEie901eTlW9ZfSC845-moFJ1iquxIvqlHWdqlknxMtn-5PqPKV7Wopz1jbd6-qEKya40vK0Cld-A97iQH6gT86vyRK2YF3ekzCSFUbYYMy_ySq67YT1JfiBfMUMM2SMDqZEFn0KscdILiEVm-DJ933ewDpEBE-uI9gME7nBMGOO-zfVq7Go8PxhPatW11er5W199-3my3JxV1shZK5b1ZSmAw5UabBDI1Cp0UoYDylsT0F3TQNSsYar3lJFAQbUWvatkCPlZ9Xno-121884WPQ5wmS20c0Q9yaAM__eeLcx6_DLdJKKtm2LwYcHgxh-7jBlM7tkcZrAY9gl02imVdtJrgr6_j_0PuyiL-kOlJKlWlmoiyO1hgmN82Mo79rSA87OBo-jK-cLLaTmndK8CD4eBTaGlCKOT79n1BxGb_6OvsDvnud9Qh8Hzf8AxDWpoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716555585</pqid></control><display><type>article</type><title>Enhanced Sensing Capacity of Terahertz Triple-Band Metamaterials Absorber Based on Pythagorean Fractal Geometry</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Mazare, Alin Gheorghita ; Abdulkarim, Yadgar I ; Karim, Ayoub Sabir ; Bakır, Mehmet ; Taouzari, Mohamed ; Muhammadsharif, Fahmi F ; Appasani, Bhargav ; Altıntaş, Olcay ; Karaaslan, Muharrem ; Bizon, Nicu</creator><creatorcontrib>Mazare, Alin Gheorghita ; Abdulkarim, Yadgar I ; Karim, Ayoub Sabir ; Bakır, Mehmet ; Taouzari, Mohamed ; Muhammadsharif, Fahmi F ; Appasani, Bhargav ; Altıntaş, Olcay ; Karaaslan, Muharrem ; Bizon, Nicu</creatorcontrib><description>A new design of a triple band perfect metamaterial absorber based on Pythagorean fractal geometry is proposed and analyzed for terahertz sensing applications. The proposed design showed an enhanced sensing performance and achieved three intensive peaks at 33.93, 36.27, and 38.39 THz, corresponding to the absorptivity of 98.5%, 99.3%, and 99.6%, respectively. Due to the symmetrical nature of the recommended design, the structure exhibited the characteristics of independency on the incident wave angles. Furthermore, a parametric study was performed to show the effects of the change in substrate type, resonator material, and substrate thickness on the absorption spectrum. At a fixed analyte thickness (0.5 μm), the resonance frequency of the design was found to be sensitive to the refractive index of the surrounding medium. The proposed design presented three ultra-sensitive responses of 1730, 1590, and 2050 GHz/RIU with the figure of merit (FoM) of 3.20, 1.54, and 4.28, respectively, when the refractive index was changed from 1.0 to 1.4. Additionally, the metamaterial sensor showed a sensitivity of 1230, 2270, and 1580 GHz/μm at the three resonance frequencies, respectively, when it was utilized for the detection of thickness variation at a fixed analyte refractive index (RI) of 1.4. As long as the RI of the biomedical samples is between 1.3 and 1.4, the proposed sensor can be used for biomedical applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15186364</identifier><identifier>PMID: 36143675</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Absorbers ; Absorbers (materials) ; Absorption spectra ; Absorptivity ; Aluminum ; Angles (geometry) ; Bandwidths ; Biomedical materials ; Boundary conditions ; Capacity ; Computer simulation ; Design ; Figure of merit ; Fractal analysis ; Fractal geometry ; Fractals ; Geometry ; Graphene ; Incident waves ; Metamaterials ; Optimization techniques ; Refractivity ; Resonance ; Sensors ; Software ; Substrates ; Terahertz frequencies ; Thickness</subject><ispartof>Materials, 2022-09, Vol.15 (18), p.6364</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-8626260ded067acd24e66fc5af0033cb0a7922a561236bc060aade775b845f03</citedby><cites>FETCH-LOGICAL-c445t-8626260ded067acd24e66fc5af0033cb0a7922a561236bc060aade775b845f03</cites><orcidid>0000-0002-0878-7405 ; 0000-0003-3237-4392 ; 0000-0002-2808-2867 ; 0000-0001-9311-7598 ; 0000-0002-5847-743X ; 0000-0003-0923-1959 ; 0000-0003-3218-9218 ; 0000-0002-4563-9671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504888/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504888/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36143675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mazare, Alin Gheorghita</creatorcontrib><creatorcontrib>Abdulkarim, Yadgar I</creatorcontrib><creatorcontrib>Karim, Ayoub Sabir</creatorcontrib><creatorcontrib>Bakır, Mehmet</creatorcontrib><creatorcontrib>Taouzari, Mohamed</creatorcontrib><creatorcontrib>Muhammadsharif, Fahmi F</creatorcontrib><creatorcontrib>Appasani, Bhargav</creatorcontrib><creatorcontrib>Altıntaş, Olcay</creatorcontrib><creatorcontrib>Karaaslan, Muharrem</creatorcontrib><creatorcontrib>Bizon, Nicu</creatorcontrib><title>Enhanced Sensing Capacity of Terahertz Triple-Band Metamaterials Absorber Based on Pythagorean Fractal Geometry</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>A new design of a triple band perfect metamaterial absorber based on Pythagorean fractal geometry is proposed and analyzed for terahertz sensing applications. The proposed design showed an enhanced sensing performance and achieved three intensive peaks at 33.93, 36.27, and 38.39 THz, corresponding to the absorptivity of 98.5%, 99.3%, and 99.6%, respectively. Due to the symmetrical nature of the recommended design, the structure exhibited the characteristics of independency on the incident wave angles. Furthermore, a parametric study was performed to show the effects of the change in substrate type, resonator material, and substrate thickness on the absorption spectrum. At a fixed analyte thickness (0.5 μm), the resonance frequency of the design was found to be sensitive to the refractive index of the surrounding medium. The proposed design presented three ultra-sensitive responses of 1730, 1590, and 2050 GHz/RIU with the figure of merit (FoM) of 3.20, 1.54, and 4.28, respectively, when the refractive index was changed from 1.0 to 1.4. Additionally, the metamaterial sensor showed a sensitivity of 1230, 2270, and 1580 GHz/μm at the three resonance frequencies, respectively, when it was utilized for the detection of thickness variation at a fixed analyte refractive index (RI) of 1.4. As long as the RI of the biomedical samples is between 1.3 and 1.4, the proposed sensor can be used for biomedical applications.</description><subject>Absorbers</subject><subject>Absorbers (materials)</subject><subject>Absorption spectra</subject><subject>Absorptivity</subject><subject>Aluminum</subject><subject>Angles (geometry)</subject><subject>Bandwidths</subject><subject>Biomedical materials</subject><subject>Boundary conditions</subject><subject>Capacity</subject><subject>Computer simulation</subject><subject>Design</subject><subject>Figure of merit</subject><subject>Fractal analysis</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Geometry</subject><subject>Graphene</subject><subject>Incident waves</subject><subject>Metamaterials</subject><subject>Optimization techniques</subject><subject>Refractivity</subject><subject>Resonance</subject><subject>Sensors</subject><subject>Software</subject><subject>Substrates</subject><subject>Terahertz frequencies</subject><subject>Thickness</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1rFDEUhgdRbKm98QdIwBsRpiaTr5kbYbv0Q6gouPfhTObMbspMsiZZYf31Ztm2Vs-5SEie901eTlW9ZfSC845-moFJ1iquxIvqlHWdqlknxMtn-5PqPKV7Wopz1jbd6-qEKya40vK0Cld-A97iQH6gT86vyRK2YF3ekzCSFUbYYMy_ySq67YT1JfiBfMUMM2SMDqZEFn0KscdILiEVm-DJ933ewDpEBE-uI9gME7nBMGOO-zfVq7Go8PxhPatW11er5W199-3my3JxV1shZK5b1ZSmAw5UabBDI1Cp0UoYDylsT0F3TQNSsYar3lJFAQbUWvatkCPlZ9Xno-121884WPQ5wmS20c0Q9yaAM__eeLcx6_DLdJKKtm2LwYcHgxh-7jBlM7tkcZrAY9gl02imVdtJrgr6_j_0PuyiL-kOlJKlWlmoiyO1hgmN82Mo79rSA87OBo-jK-cLLaTmndK8CD4eBTaGlCKOT79n1BxGb_6OvsDvnud9Qh8Hzf8AxDWpoA</recordid><startdate>20220913</startdate><enddate>20220913</enddate><creator>Mazare, Alin Gheorghita</creator><creator>Abdulkarim, Yadgar I</creator><creator>Karim, Ayoub Sabir</creator><creator>Bakır, Mehmet</creator><creator>Taouzari, Mohamed</creator><creator>Muhammadsharif, Fahmi F</creator><creator>Appasani, Bhargav</creator><creator>Altıntaş, Olcay</creator><creator>Karaaslan, Muharrem</creator><creator>Bizon, Nicu</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0878-7405</orcidid><orcidid>https://orcid.org/0000-0003-3237-4392</orcidid><orcidid>https://orcid.org/0000-0002-2808-2867</orcidid><orcidid>https://orcid.org/0000-0001-9311-7598</orcidid><orcidid>https://orcid.org/0000-0002-5847-743X</orcidid><orcidid>https://orcid.org/0000-0003-0923-1959</orcidid><orcidid>https://orcid.org/0000-0003-3218-9218</orcidid><orcidid>https://orcid.org/0000-0002-4563-9671</orcidid></search><sort><creationdate>20220913</creationdate><title>Enhanced Sensing Capacity of Terahertz Triple-Band Metamaterials Absorber Based on Pythagorean Fractal Geometry</title><author>Mazare, Alin Gheorghita ; Abdulkarim, Yadgar I ; Karim, Ayoub Sabir ; Bakır, Mehmet ; Taouzari, Mohamed ; Muhammadsharif, Fahmi F ; Appasani, Bhargav ; Altıntaş, Olcay ; Karaaslan, Muharrem ; Bizon, Nicu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-8626260ded067acd24e66fc5af0033cb0a7922a561236bc060aade775b845f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorbers</topic><topic>Absorbers (materials)</topic><topic>Absorption spectra</topic><topic>Absorptivity</topic><topic>Aluminum</topic><topic>Angles (geometry)</topic><topic>Bandwidths</topic><topic>Biomedical materials</topic><topic>Boundary conditions</topic><topic>Capacity</topic><topic>Computer simulation</topic><topic>Design</topic><topic>Figure of merit</topic><topic>Fractal analysis</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Geometry</topic><topic>Graphene</topic><topic>Incident waves</topic><topic>Metamaterials</topic><topic>Optimization techniques</topic><topic>Refractivity</topic><topic>Resonance</topic><topic>Sensors</topic><topic>Software</topic><topic>Substrates</topic><topic>Terahertz frequencies</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazare, Alin Gheorghita</creatorcontrib><creatorcontrib>Abdulkarim, Yadgar I</creatorcontrib><creatorcontrib>Karim, Ayoub Sabir</creatorcontrib><creatorcontrib>Bakır, Mehmet</creatorcontrib><creatorcontrib>Taouzari, Mohamed</creatorcontrib><creatorcontrib>Muhammadsharif, Fahmi F</creatorcontrib><creatorcontrib>Appasani, Bhargav</creatorcontrib><creatorcontrib>Altıntaş, Olcay</creatorcontrib><creatorcontrib>Karaaslan, Muharrem</creatorcontrib><creatorcontrib>Bizon, Nicu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazare, Alin Gheorghita</au><au>Abdulkarim, Yadgar I</au><au>Karim, Ayoub Sabir</au><au>Bakır, Mehmet</au><au>Taouzari, Mohamed</au><au>Muhammadsharif, Fahmi F</au><au>Appasani, Bhargav</au><au>Altıntaş, Olcay</au><au>Karaaslan, Muharrem</au><au>Bizon, Nicu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Sensing Capacity of Terahertz Triple-Band Metamaterials Absorber Based on Pythagorean Fractal Geometry</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-09-13</date><risdate>2022</risdate><volume>15</volume><issue>18</issue><spage>6364</spage><pages>6364-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>A new design of a triple band perfect metamaterial absorber based on Pythagorean fractal geometry is proposed and analyzed for terahertz sensing applications. The proposed design showed an enhanced sensing performance and achieved three intensive peaks at 33.93, 36.27, and 38.39 THz, corresponding to the absorptivity of 98.5%, 99.3%, and 99.6%, respectively. Due to the symmetrical nature of the recommended design, the structure exhibited the characteristics of independency on the incident wave angles. Furthermore, a parametric study was performed to show the effects of the change in substrate type, resonator material, and substrate thickness on the absorption spectrum. At a fixed analyte thickness (0.5 μm), the resonance frequency of the design was found to be sensitive to the refractive index of the surrounding medium. The proposed design presented three ultra-sensitive responses of 1730, 1590, and 2050 GHz/RIU with the figure of merit (FoM) of 3.20, 1.54, and 4.28, respectively, when the refractive index was changed from 1.0 to 1.4. Additionally, the metamaterial sensor showed a sensitivity of 1230, 2270, and 1580 GHz/μm at the three resonance frequencies, respectively, when it was utilized for the detection of thickness variation at a fixed analyte refractive index (RI) of 1.4. As long as the RI of the biomedical samples is between 1.3 and 1.4, the proposed sensor can be used for biomedical applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36143675</pmid><doi>10.3390/ma15186364</doi><orcidid>https://orcid.org/0000-0002-0878-7405</orcidid><orcidid>https://orcid.org/0000-0003-3237-4392</orcidid><orcidid>https://orcid.org/0000-0002-2808-2867</orcidid><orcidid>https://orcid.org/0000-0001-9311-7598</orcidid><orcidid>https://orcid.org/0000-0002-5847-743X</orcidid><orcidid>https://orcid.org/0000-0003-0923-1959</orcidid><orcidid>https://orcid.org/0000-0003-3218-9218</orcidid><orcidid>https://orcid.org/0000-0002-4563-9671</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-09, Vol.15 (18), p.6364 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9504888 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Absorbers Absorbers (materials) Absorption spectra Absorptivity Aluminum Angles (geometry) Bandwidths Biomedical materials Boundary conditions Capacity Computer simulation Design Figure of merit Fractal analysis Fractal geometry Fractals Geometry Graphene Incident waves Metamaterials Optimization techniques Refractivity Resonance Sensors Software Substrates Terahertz frequencies Thickness |
title | Enhanced Sensing Capacity of Terahertz Triple-Band Metamaterials Absorber Based on Pythagorean Fractal Geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Sensing%20Capacity%20of%20Terahertz%20Triple-Band%20Metamaterials%20Absorber%20Based%20on%20Pythagorean%20Fractal%20Geometry&rft.jtitle=Materials&rft.au=Mazare,%20Alin%20Gheorghita&rft.date=2022-09-13&rft.volume=15&rft.issue=18&rft.spage=6364&rft.pages=6364-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15186364&rft_dat=%3Cgale_pubme%3EA745739673%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716555585&rft_id=info:pmid/36143675&rft_galeid=A745739673&rfr_iscdi=true |