Systematic Analysis of Genetic and Pathway Determinants of Eribulin Sensitivity across 100 Human Cancer Cell Lines from the Cancer Cell Line Encyclopedia (CCLE)
Eribulin, a natural product-based microtubule targeting agent with cytotoxic and noncytotoxic mechanisms, is FDA approved for certain patients with advanced breast cancer and liposarcoma. To investigate the feasibility of developing drug-specific predictive biomarkers, we quantified antiproliferativ...
Gespeichert in:
Veröffentlicht in: | Cancers 2022-09, Vol.14 (18), p.4532 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | 4532 |
container_title | Cancers |
container_volume | 14 |
creator | Sachdev, Pallavi Ronen, Roy Dutkowski, Janusz Littlefield, Bruce A |
description | Eribulin, a natural product-based microtubule targeting agent with cytotoxic and noncytotoxic mechanisms, is FDA approved for certain patients with advanced breast cancer and liposarcoma. To investigate the feasibility of developing drug-specific predictive biomarkers, we quantified antiproliferative activities of eribulin versus paclitaxel and vinorelbine against 100 human cancer cell lines from the Cancer Cell Line Encyclopedia, and correlated results with publicly available databases to identify genes and pathways associated with eribulin response, either uniquely or shared with paclitaxel or vinorelbine. Mean expression ratios of 11,985 genes between the most and least sensitive cell line quartiles were sorted by p-values and drug overlaps, yielding 52, 29 and 80 genes uniquely associated with eribulin, paclitaxel and vinorelbine, respectively. Further restriction to minimum 2-fold ratios followed by reintroducing data from the middle two quartiles identified 9 and 13 drug-specific unique fingerprint genes for eribulin and vinorelbine, respectively; surprisingly, no gene met all criteria for paclitaxel. Interactome and Reactome pathway analyses showed that unique fingerprint genes of both drugs were primarily associated with cellular signaling, not microtubule-related pathways, although considerable differences existed in individual pathways identified. Finally, four-gene (C5ORF38, DAAM1, IRX2, CD70) and five-gene (EPHA2, NGEF, SEPTIN10, TRIP10, VSIG10) multivariate regression models for eribulin and vinorelbine showed high statistical correlation with drug-specific responses across the 100 cell lines and accurately calculated predicted mean IC50s for the most and least sensitive cell line quartiles as surrogates for responders and nonresponders, respectively. Collectively, these results provide a foundation for developing drug-specific predictive biomarkers for eribulin and vinorelbine. |
doi_str_mv | 10.3390/cancers14184532 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9496846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745271600</galeid><sourcerecordid>A745271600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-e64287b7386cd49b1983d65a4e83b3abe5f2461c291342329d49779c576a0a5e3</originalsourceid><addsrcrecordid>eNptkk1v3CAQhq2olRJtc-4VqZf0sIkxGOxLpZW7TSqt1Ehpz2iMx1kiG7aAE_nf9KeW3URtkxQOoJlnXpiPLHtP83PG6vxCg9XoA-W04iUrjrKTIpfFUoiav_nnfpydhnCXp8UYlUKeZL9u5hBxhGg0WVkY5mACcT25RIt7G9iOXEPcPsBMPmNEPxoLNh6YtTftNBhLbtAGE829iTMB7V0IhOY5uZpGsKQ5fI00OAxkYywG0ns3krjFVy6ytnrWg9thZ4CcNc1m_fFd9raHIeDp07nIfnxZf2-ulptvl1-b1WapuSjjEgUvKtlKVgnd8bqldcU6UQLHirUMWiz7gguqi5oyXrCiTpCUtS6lgBxKZIvs06PubmpH7DTa6GFQO29G8LNyYNRzjzVbdevuVc1rUXGRBM6eBLz7OWGIajRBp9TAopuCKmSqeC1ZyRP64QV65yafqn-gREnzioq_1C0MqIztXXpX70XVSvJyT6Y-LrLz_1Bpdzga7Sz2JtmfBVw8Bhwa5bH_kyPN1X6Y1IthYr8BNqq9JA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716510816</pqid></control><display><type>article</type><title>Systematic Analysis of Genetic and Pathway Determinants of Eribulin Sensitivity across 100 Human Cancer Cell Lines from the Cancer Cell Line Encyclopedia (CCLE)</title><source>PubMed (Medline)</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Sachdev, Pallavi ; Ronen, Roy ; Dutkowski, Janusz ; Littlefield, Bruce A</creator><creatorcontrib>Sachdev, Pallavi ; Ronen, Roy ; Dutkowski, Janusz ; Littlefield, Bruce A</creatorcontrib><description>Eribulin, a natural product-based microtubule targeting agent with cytotoxic and noncytotoxic mechanisms, is FDA approved for certain patients with advanced breast cancer and liposarcoma. To investigate the feasibility of developing drug-specific predictive biomarkers, we quantified antiproliferative activities of eribulin versus paclitaxel and vinorelbine against 100 human cancer cell lines from the Cancer Cell Line Encyclopedia, and correlated results with publicly available databases to identify genes and pathways associated with eribulin response, either uniquely or shared with paclitaxel or vinorelbine. Mean expression ratios of 11,985 genes between the most and least sensitive cell line quartiles were sorted by p-values and drug overlaps, yielding 52, 29 and 80 genes uniquely associated with eribulin, paclitaxel and vinorelbine, respectively. Further restriction to minimum 2-fold ratios followed by reintroducing data from the middle two quartiles identified 9 and 13 drug-specific unique fingerprint genes for eribulin and vinorelbine, respectively; surprisingly, no gene met all criteria for paclitaxel. Interactome and Reactome pathway analyses showed that unique fingerprint genes of both drugs were primarily associated with cellular signaling, not microtubule-related pathways, although considerable differences existed in individual pathways identified. Finally, four-gene (C5ORF38, DAAM1, IRX2, CD70) and five-gene (EPHA2, NGEF, SEPTIN10, TRIP10, VSIG10) multivariate regression models for eribulin and vinorelbine showed high statistical correlation with drug-specific responses across the 100 cell lines and accurately calculated predicted mean IC50s for the most and least sensitive cell line quartiles as surrogates for responders and nonresponders, respectively. Collectively, these results provide a foundation for developing drug-specific predictive biomarkers for eribulin and vinorelbine.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers14184532</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Binding sites ; Biomarkers ; Breast cancer ; Cancer ; Cancer cells ; CD70 antigen ; Cell lines ; Cytotoxicity ; Dosage and administration ; Drug dosages ; EphA2 protein ; Eribulin mesylate ; Gene expression ; Genetic analysis ; Genetic aspects ; Health aspects ; Hypotheses ; Hypothesis testing ; Iroquois protein ; Laboratories ; Liposarcoma ; Natural products ; Paclitaxel ; Propagation ; Ratios ; Regression analysis ; Statistical analysis ; Tumor cell lines ; Vinorelbine</subject><ispartof>Cancers, 2022-09, Vol.14 (18), p.4532</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-e64287b7386cd49b1983d65a4e83b3abe5f2461c291342329d49779c576a0a5e3</citedby><cites>FETCH-LOGICAL-c465t-e64287b7386cd49b1983d65a4e83b3abe5f2461c291342329d49779c576a0a5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496846/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496846/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids></links><search><creatorcontrib>Sachdev, Pallavi</creatorcontrib><creatorcontrib>Ronen, Roy</creatorcontrib><creatorcontrib>Dutkowski, Janusz</creatorcontrib><creatorcontrib>Littlefield, Bruce A</creatorcontrib><title>Systematic Analysis of Genetic and Pathway Determinants of Eribulin Sensitivity across 100 Human Cancer Cell Lines from the Cancer Cell Line Encyclopedia (CCLE)</title><title>Cancers</title><description>Eribulin, a natural product-based microtubule targeting agent with cytotoxic and noncytotoxic mechanisms, is FDA approved for certain patients with advanced breast cancer and liposarcoma. To investigate the feasibility of developing drug-specific predictive biomarkers, we quantified antiproliferative activities of eribulin versus paclitaxel and vinorelbine against 100 human cancer cell lines from the Cancer Cell Line Encyclopedia, and correlated results with publicly available databases to identify genes and pathways associated with eribulin response, either uniquely or shared with paclitaxel or vinorelbine. Mean expression ratios of 11,985 genes between the most and least sensitive cell line quartiles were sorted by p-values and drug overlaps, yielding 52, 29 and 80 genes uniquely associated with eribulin, paclitaxel and vinorelbine, respectively. Further restriction to minimum 2-fold ratios followed by reintroducing data from the middle two quartiles identified 9 and 13 drug-specific unique fingerprint genes for eribulin and vinorelbine, respectively; surprisingly, no gene met all criteria for paclitaxel. Interactome and Reactome pathway analyses showed that unique fingerprint genes of both drugs were primarily associated with cellular signaling, not microtubule-related pathways, although considerable differences existed in individual pathways identified. Finally, four-gene (C5ORF38, DAAM1, IRX2, CD70) and five-gene (EPHA2, NGEF, SEPTIN10, TRIP10, VSIG10) multivariate regression models for eribulin and vinorelbine showed high statistical correlation with drug-specific responses across the 100 cell lines and accurately calculated predicted mean IC50s for the most and least sensitive cell line quartiles as surrogates for responders and nonresponders, respectively. Collectively, these results provide a foundation for developing drug-specific predictive biomarkers for eribulin and vinorelbine.</description><subject>Binding sites</subject><subject>Biomarkers</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer cells</subject><subject>CD70 antigen</subject><subject>Cell lines</subject><subject>Cytotoxicity</subject><subject>Dosage and administration</subject><subject>Drug dosages</subject><subject>EphA2 protein</subject><subject>Eribulin mesylate</subject><subject>Gene expression</subject><subject>Genetic analysis</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Iroquois protein</subject><subject>Laboratories</subject><subject>Liposarcoma</subject><subject>Natural products</subject><subject>Paclitaxel</subject><subject>Propagation</subject><subject>Ratios</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Tumor cell lines</subject><subject>Vinorelbine</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkk1v3CAQhq2olRJtc-4VqZf0sIkxGOxLpZW7TSqt1Ehpz2iMx1kiG7aAE_nf9KeW3URtkxQOoJlnXpiPLHtP83PG6vxCg9XoA-W04iUrjrKTIpfFUoiav_nnfpydhnCXp8UYlUKeZL9u5hBxhGg0WVkY5mACcT25RIt7G9iOXEPcPsBMPmNEPxoLNh6YtTftNBhLbtAGE829iTMB7V0IhOY5uZpGsKQ5fI00OAxkYywG0ns3krjFVy6ytnrWg9thZ4CcNc1m_fFd9raHIeDp07nIfnxZf2-ulptvl1-b1WapuSjjEgUvKtlKVgnd8bqldcU6UQLHirUMWiz7gguqi5oyXrCiTpCUtS6lgBxKZIvs06PubmpH7DTa6GFQO29G8LNyYNRzjzVbdevuVc1rUXGRBM6eBLz7OWGIajRBp9TAopuCKmSqeC1ZyRP64QV65yafqn-gREnzioq_1C0MqIztXXpX70XVSvJyT6Y-LrLz_1Bpdzga7Sz2JtmfBVw8Bhwa5bH_kyPN1X6Y1IthYr8BNqq9JA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Sachdev, Pallavi</creator><creator>Ronen, Roy</creator><creator>Dutkowski, Janusz</creator><creator>Littlefield, Bruce A</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220901</creationdate><title>Systematic Analysis of Genetic and Pathway Determinants of Eribulin Sensitivity across 100 Human Cancer Cell Lines from the Cancer Cell Line Encyclopedia (CCLE)</title><author>Sachdev, Pallavi ; Ronen, Roy ; Dutkowski, Janusz ; Littlefield, Bruce A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-e64287b7386cd49b1983d65a4e83b3abe5f2461c291342329d49779c576a0a5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binding sites</topic><topic>Biomarkers</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer cells</topic><topic>CD70 antigen</topic><topic>Cell lines</topic><topic>Cytotoxicity</topic><topic>Dosage and administration</topic><topic>Drug dosages</topic><topic>EphA2 protein</topic><topic>Eribulin mesylate</topic><topic>Gene expression</topic><topic>Genetic analysis</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Iroquois protein</topic><topic>Laboratories</topic><topic>Liposarcoma</topic><topic>Natural products</topic><topic>Paclitaxel</topic><topic>Propagation</topic><topic>Ratios</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Tumor cell lines</topic><topic>Vinorelbine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sachdev, Pallavi</creatorcontrib><creatorcontrib>Ronen, Roy</creatorcontrib><creatorcontrib>Dutkowski, Janusz</creatorcontrib><creatorcontrib>Littlefield, Bruce A</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sachdev, Pallavi</au><au>Ronen, Roy</au><au>Dutkowski, Janusz</au><au>Littlefield, Bruce A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Analysis of Genetic and Pathway Determinants of Eribulin Sensitivity across 100 Human Cancer Cell Lines from the Cancer Cell Line Encyclopedia (CCLE)</atitle><jtitle>Cancers</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>14</volume><issue>18</issue><spage>4532</spage><pages>4532-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Eribulin, a natural product-based microtubule targeting agent with cytotoxic and noncytotoxic mechanisms, is FDA approved for certain patients with advanced breast cancer and liposarcoma. To investigate the feasibility of developing drug-specific predictive biomarkers, we quantified antiproliferative activities of eribulin versus paclitaxel and vinorelbine against 100 human cancer cell lines from the Cancer Cell Line Encyclopedia, and correlated results with publicly available databases to identify genes and pathways associated with eribulin response, either uniquely or shared with paclitaxel or vinorelbine. Mean expression ratios of 11,985 genes between the most and least sensitive cell line quartiles were sorted by p-values and drug overlaps, yielding 52, 29 and 80 genes uniquely associated with eribulin, paclitaxel and vinorelbine, respectively. Further restriction to minimum 2-fold ratios followed by reintroducing data from the middle two quartiles identified 9 and 13 drug-specific unique fingerprint genes for eribulin and vinorelbine, respectively; surprisingly, no gene met all criteria for paclitaxel. Interactome and Reactome pathway analyses showed that unique fingerprint genes of both drugs were primarily associated with cellular signaling, not microtubule-related pathways, although considerable differences existed in individual pathways identified. Finally, four-gene (C5ORF38, DAAM1, IRX2, CD70) and five-gene (EPHA2, NGEF, SEPTIN10, TRIP10, VSIG10) multivariate regression models for eribulin and vinorelbine showed high statistical correlation with drug-specific responses across the 100 cell lines and accurately calculated predicted mean IC50s for the most and least sensitive cell line quartiles as surrogates for responders and nonresponders, respectively. Collectively, these results provide a foundation for developing drug-specific predictive biomarkers for eribulin and vinorelbine.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cancers14184532</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2022-09, Vol.14 (18), p.4532 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9496846 |
source | PubMed (Medline); MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Binding sites Biomarkers Breast cancer Cancer Cancer cells CD70 antigen Cell lines Cytotoxicity Dosage and administration Drug dosages EphA2 protein Eribulin mesylate Gene expression Genetic analysis Genetic aspects Health aspects Hypotheses Hypothesis testing Iroquois protein Laboratories Liposarcoma Natural products Paclitaxel Propagation Ratios Regression analysis Statistical analysis Tumor cell lines Vinorelbine |
title | Systematic Analysis of Genetic and Pathway Determinants of Eribulin Sensitivity across 100 Human Cancer Cell Lines from the Cancer Cell Line Encyclopedia (CCLE) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Analysis%20of%20Genetic%20and%20Pathway%20Determinants%20of%20Eribulin%20Sensitivity%20across%20100%20Human%20Cancer%20Cell%20Lines%20from%20the%20Cancer%20Cell%20Line%20Encyclopedia%20(CCLE)&rft.jtitle=Cancers&rft.au=Sachdev,%20Pallavi&rft.date=2022-09-01&rft.volume=14&rft.issue=18&rft.spage=4532&rft.pages=4532-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers14184532&rft_dat=%3Cgale_pubme%3EA745271600%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716510816&rft_id=info:pmid/&rft_galeid=A745271600&rfr_iscdi=true |