Arid5a Mediates an IL-17–Dependent Pathway That Drives Autoimmunity but Not Antifungal Host Defense

IL-17 contributes to the pathogenesis of certain autoimmune diseases, but conversely is essential for host defense against fungi. Ab-based biologic drugs that neutralize IL-17 are effective in autoimmunity but can be accompanied by adverse side effects. Candida albicans is a commensal fungus that is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2022-09, Vol.209 (6), p.1138-1145
Hauptverfasser: Taylor, Tiffany C., Li, Yang, Li, De-Dong, Majumder, Saikat, McGeachy, Mandy J., Biswas, Partha S., Gingras, Sebastien, Gaffen, Sarah L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:IL-17 contributes to the pathogenesis of certain autoimmune diseases, but conversely is essential for host defense against fungi. Ab-based biologic drugs that neutralize IL-17 are effective in autoimmunity but can be accompanied by adverse side effects. Candida albicans is a commensal fungus that is the primary causative agent of oropharyngeal and disseminated candidiasis. Defects in IL-17 signaling cause susceptibility to candidiasis in mice and humans. A key facet of IL-17 receptor signaling involves RNA-binding proteins, which orchestrate the fate of target mRNA transcripts. In tissue culture models we showed that the RNA-binding protein AT-rich interaction domain 5A (Arid5a) promotes the stability and/or translation of multiple IL-17–dependent mRNAs. Moreover, during oropharyngeal candidiasis, Arid5a is elevated within the oral mucosa in an IL-17–dependent manner. However, the contribution of Arid5a to IL-17–driven events in vivo is poorly defined. In this study, we used CRISPR-Cas9 to generate mice lacking Arid5a. Arid5a−/− mice were fully resistant to experimental autoimmune encephalomyelitis, an autoimmune setting in which IL-17 signaling drives pathology. Surprisingly, Arid5a−/− mice were resistant to oropharyngeal candidiasis and systemic candidiasis, similar to immunocompetent wild-type mice and contrasting with mice defective in IL-17 signaling. Therefore, Arid5a-dependent signals mediate pathology in autoimmunity and yet are not required for immunity to candidiasis, indicating that selective targeting of IL-17 signaling pathway components may be a viable strategy for development of therapeutics that spare IL-17–driven host defense.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.2200132