Accurate de novo design of membrane-traversing macrocycles
We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbon...
Gespeichert in:
Veröffentlicht in: | Cell 2022-09, Vol.185 (19), p.3520-3532.e26 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3532.e26 |
---|---|
container_issue | 19 |
container_start_page | 3520 |
container_title | Cell |
container_volume | 185 |
creator | Bhardwaj, Gaurav O’Connor, Jacob Rettie, Stephen Huang, Yen-Hua Ramelot, Theresa A. Mulligan, Vikram Khipple Alpkilic, Gizem Gokce Palmer, Jonathan Bera, Asim K. Bick, Matthew J. Di Piazza, Maddalena Li, Xinting Hosseinzadeh, Parisa Craven, Timothy W. Tejero, Roberto Lauko, Anna Choi, Ryan Glynn, Calina Dong, Linlin Griffin, Robert van Voorhis, Wesley C. Rodriguez, Jose Stewart, Lance Montelione, Gaetano T. Craik, David Baker, David |
description | We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6–12 residue size range cross membranes with an apparent permeability greater than 1 × 10−6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics.
[Display omitted]
•Computational design of diverse permeable macrocycles beyond the “rule-of-five” space•X-ray and NMR structures of designed macrocycles match their computational models•Designed macrocycles are permeable in vitro and orally bioavailable in vivo•Designed chameleonic peptides show solvent-dependent conformational switching
An investigation of the design principles of macrocyclic peptide membrane permeability and oral bioavailability enables the generation of synthetic macrocycles that fold into the predicted conformation, can cross membranes, and even adopt different conformations depending on polar versus nonpolar contexts. |
doi_str_mv | 10.1016/j.cell.2022.07.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9490236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867422009229</els_id><sourcerecordid>2718378608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-877da99fe88fbf55e1346be9ec0bad9b37097d40a78b38721e7555f26b38272c3</originalsourceid><addsrcrecordid>eNqNUcFq3DAUFCWlu0n7Az0EH3Ox8yTZllRCYFnSpBDopT0LWX7earGtjeRd2L-PzKahuYSeHo83M8ybIeQrhYICra-3hcW-LxgwVoAogKoPZElBibykgp2RJYBiuaxFuSDnMW4BQFZV9YkseA0lLXm1JN9W1u6DmTBrMRv9wacZ3WbMfJcNODTBjJhPwRwwRDdussHY4O3R9hg_k4-d6SN-eZkX5Pf3u1_rh_zx5_2P9eoxtxUXUy6FaI1SHUrZNV1VIeVl3aBCC41pVcNFctyWYIRsuBSMokgmO1anjQlm-QW5Penu9s2ArcUx-en1LrjBhKP2xum3l9H90Rt_0KpUwHidBK5eBIJ_2mOc9ODiHF36ze-jZoJKLmQN8j-gIAWvSjZD2QmaAokxYPfqiIKe-9FbPTP13I8GoVM_iXT57y-vlL-FJMDNCYAp0YPDoKN1OFpsXUA76da79_SfActPoaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708735428</pqid></control><display><type>article</type><title>Accurate de novo design of membrane-traversing macrocycles</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bhardwaj, Gaurav ; O’Connor, Jacob ; Rettie, Stephen ; Huang, Yen-Hua ; Ramelot, Theresa A. ; Mulligan, Vikram Khipple ; Alpkilic, Gizem Gokce ; Palmer, Jonathan ; Bera, Asim K. ; Bick, Matthew J. ; Di Piazza, Maddalena ; Li, Xinting ; Hosseinzadeh, Parisa ; Craven, Timothy W. ; Tejero, Roberto ; Lauko, Anna ; Choi, Ryan ; Glynn, Calina ; Dong, Linlin ; Griffin, Robert ; van Voorhis, Wesley C. ; Rodriguez, Jose ; Stewart, Lance ; Montelione, Gaetano T. ; Craik, David ; Baker, David</creator><creatorcontrib>Bhardwaj, Gaurav ; O’Connor, Jacob ; Rettie, Stephen ; Huang, Yen-Hua ; Ramelot, Theresa A. ; Mulligan, Vikram Khipple ; Alpkilic, Gizem Gokce ; Palmer, Jonathan ; Bera, Asim K. ; Bick, Matthew J. ; Di Piazza, Maddalena ; Li, Xinting ; Hosseinzadeh, Parisa ; Craven, Timothy W. ; Tejero, Roberto ; Lauko, Anna ; Choi, Ryan ; Glynn, Calina ; Dong, Linlin ; Griffin, Robert ; van Voorhis, Wesley C. ; Rodriguez, Jose ; Stewart, Lance ; Montelione, Gaetano T. ; Craik, David ; Baker, David</creatorcontrib><description>We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6–12 residue size range cross membranes with an apparent permeability greater than 1 × 10−6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics.
[Display omitted]
•Computational design of diverse permeable macrocycles beyond the “rule-of-five” space•X-ray and NMR structures of designed macrocycles match their computational models•Designed macrocycles are permeable in vitro and orally bioavailable in vivo•Designed chameleonic peptides show solvent-dependent conformational switching
An investigation of the design principles of macrocyclic peptide membrane permeability and oral bioavailability enables the generation of synthetic macrocycles that fold into the predicted conformation, can cross membranes, and even adopt different conformations depending on polar versus nonpolar contexts.</description><identifier>ISSN: 0092-8674</identifier><identifier>ISSN: 1097-4172</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2022.07.019</identifier><identifier>PMID: 36041435</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amides - chemistry ; bioavailability ; computational design ; Hydrogen ; Hydrogen Bonding ; Lipids ; membrane permeability ; oral bioavailability ; peptide design ; peptides ; Peptides - chemistry ; therapeutics</subject><ispartof>Cell, 2022-09, Vol.185 (19), p.3520-3532.e26</ispartof><rights>2022 The Author(s)</rights><rights>Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2022 The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-877da99fe88fbf55e1346be9ec0bad9b37097d40a78b38721e7555f26b38272c3</citedby><cites>FETCH-LOGICAL-c537t-877da99fe88fbf55e1346be9ec0bad9b37097d40a78b38721e7555f26b38272c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867422009229$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36041435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhardwaj, Gaurav</creatorcontrib><creatorcontrib>O’Connor, Jacob</creatorcontrib><creatorcontrib>Rettie, Stephen</creatorcontrib><creatorcontrib>Huang, Yen-Hua</creatorcontrib><creatorcontrib>Ramelot, Theresa A.</creatorcontrib><creatorcontrib>Mulligan, Vikram Khipple</creatorcontrib><creatorcontrib>Alpkilic, Gizem Gokce</creatorcontrib><creatorcontrib>Palmer, Jonathan</creatorcontrib><creatorcontrib>Bera, Asim K.</creatorcontrib><creatorcontrib>Bick, Matthew J.</creatorcontrib><creatorcontrib>Di Piazza, Maddalena</creatorcontrib><creatorcontrib>Li, Xinting</creatorcontrib><creatorcontrib>Hosseinzadeh, Parisa</creatorcontrib><creatorcontrib>Craven, Timothy W.</creatorcontrib><creatorcontrib>Tejero, Roberto</creatorcontrib><creatorcontrib>Lauko, Anna</creatorcontrib><creatorcontrib>Choi, Ryan</creatorcontrib><creatorcontrib>Glynn, Calina</creatorcontrib><creatorcontrib>Dong, Linlin</creatorcontrib><creatorcontrib>Griffin, Robert</creatorcontrib><creatorcontrib>van Voorhis, Wesley C.</creatorcontrib><creatorcontrib>Rodriguez, Jose</creatorcontrib><creatorcontrib>Stewart, Lance</creatorcontrib><creatorcontrib>Montelione, Gaetano T.</creatorcontrib><creatorcontrib>Craik, David</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><title>Accurate de novo design of membrane-traversing macrocycles</title><title>Cell</title><addtitle>Cell</addtitle><description>We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6–12 residue size range cross membranes with an apparent permeability greater than 1 × 10−6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics.
[Display omitted]
•Computational design of diverse permeable macrocycles beyond the “rule-of-five” space•X-ray and NMR structures of designed macrocycles match their computational models•Designed macrocycles are permeable in vitro and orally bioavailable in vivo•Designed chameleonic peptides show solvent-dependent conformational switching
An investigation of the design principles of macrocyclic peptide membrane permeability and oral bioavailability enables the generation of synthetic macrocycles that fold into the predicted conformation, can cross membranes, and even adopt different conformations depending on polar versus nonpolar contexts.</description><subject>Amides - chemistry</subject><subject>bioavailability</subject><subject>computational design</subject><subject>Hydrogen</subject><subject>Hydrogen Bonding</subject><subject>Lipids</subject><subject>membrane permeability</subject><subject>oral bioavailability</subject><subject>peptide design</subject><subject>peptides</subject><subject>Peptides - chemistry</subject><subject>therapeutics</subject><issn>0092-8674</issn><issn>1097-4172</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUcFq3DAUFCWlu0n7Az0EH3Ox8yTZllRCYFnSpBDopT0LWX7earGtjeRd2L-PzKahuYSeHo83M8ybIeQrhYICra-3hcW-LxgwVoAogKoPZElBibykgp2RJYBiuaxFuSDnMW4BQFZV9YkseA0lLXm1JN9W1u6DmTBrMRv9wacZ3WbMfJcNODTBjJhPwRwwRDdussHY4O3R9hg_k4-d6SN-eZkX5Pf3u1_rh_zx5_2P9eoxtxUXUy6FaI1SHUrZNV1VIeVl3aBCC41pVcNFctyWYIRsuBSMokgmO1anjQlm-QW5Penu9s2ArcUx-en1LrjBhKP2xum3l9H90Rt_0KpUwHidBK5eBIJ_2mOc9ODiHF36ze-jZoJKLmQN8j-gIAWvSjZD2QmaAokxYPfqiIKe-9FbPTP13I8GoVM_iXT57y-vlL-FJMDNCYAp0YPDoKN1OFpsXUA76da79_SfActPoaQ</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Bhardwaj, Gaurav</creator><creator>O’Connor, Jacob</creator><creator>Rettie, Stephen</creator><creator>Huang, Yen-Hua</creator><creator>Ramelot, Theresa A.</creator><creator>Mulligan, Vikram Khipple</creator><creator>Alpkilic, Gizem Gokce</creator><creator>Palmer, Jonathan</creator><creator>Bera, Asim K.</creator><creator>Bick, Matthew J.</creator><creator>Di Piazza, Maddalena</creator><creator>Li, Xinting</creator><creator>Hosseinzadeh, Parisa</creator><creator>Craven, Timothy W.</creator><creator>Tejero, Roberto</creator><creator>Lauko, Anna</creator><creator>Choi, Ryan</creator><creator>Glynn, Calina</creator><creator>Dong, Linlin</creator><creator>Griffin, Robert</creator><creator>van Voorhis, Wesley C.</creator><creator>Rodriguez, Jose</creator><creator>Stewart, Lance</creator><creator>Montelione, Gaetano T.</creator><creator>Craik, David</creator><creator>Baker, David</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20220915</creationdate><title>Accurate de novo design of membrane-traversing macrocycles</title><author>Bhardwaj, Gaurav ; O’Connor, Jacob ; Rettie, Stephen ; Huang, Yen-Hua ; Ramelot, Theresa A. ; Mulligan, Vikram Khipple ; Alpkilic, Gizem Gokce ; Palmer, Jonathan ; Bera, Asim K. ; Bick, Matthew J. ; Di Piazza, Maddalena ; Li, Xinting ; Hosseinzadeh, Parisa ; Craven, Timothy W. ; Tejero, Roberto ; Lauko, Anna ; Choi, Ryan ; Glynn, Calina ; Dong, Linlin ; Griffin, Robert ; van Voorhis, Wesley C. ; Rodriguez, Jose ; Stewart, Lance ; Montelione, Gaetano T. ; Craik, David ; Baker, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-877da99fe88fbf55e1346be9ec0bad9b37097d40a78b38721e7555f26b38272c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amides - chemistry</topic><topic>bioavailability</topic><topic>computational design</topic><topic>Hydrogen</topic><topic>Hydrogen Bonding</topic><topic>Lipids</topic><topic>membrane permeability</topic><topic>oral bioavailability</topic><topic>peptide design</topic><topic>peptides</topic><topic>Peptides - chemistry</topic><topic>therapeutics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhardwaj, Gaurav</creatorcontrib><creatorcontrib>O’Connor, Jacob</creatorcontrib><creatorcontrib>Rettie, Stephen</creatorcontrib><creatorcontrib>Huang, Yen-Hua</creatorcontrib><creatorcontrib>Ramelot, Theresa A.</creatorcontrib><creatorcontrib>Mulligan, Vikram Khipple</creatorcontrib><creatorcontrib>Alpkilic, Gizem Gokce</creatorcontrib><creatorcontrib>Palmer, Jonathan</creatorcontrib><creatorcontrib>Bera, Asim K.</creatorcontrib><creatorcontrib>Bick, Matthew J.</creatorcontrib><creatorcontrib>Di Piazza, Maddalena</creatorcontrib><creatorcontrib>Li, Xinting</creatorcontrib><creatorcontrib>Hosseinzadeh, Parisa</creatorcontrib><creatorcontrib>Craven, Timothy W.</creatorcontrib><creatorcontrib>Tejero, Roberto</creatorcontrib><creatorcontrib>Lauko, Anna</creatorcontrib><creatorcontrib>Choi, Ryan</creatorcontrib><creatorcontrib>Glynn, Calina</creatorcontrib><creatorcontrib>Dong, Linlin</creatorcontrib><creatorcontrib>Griffin, Robert</creatorcontrib><creatorcontrib>van Voorhis, Wesley C.</creatorcontrib><creatorcontrib>Rodriguez, Jose</creatorcontrib><creatorcontrib>Stewart, Lance</creatorcontrib><creatorcontrib>Montelione, Gaetano T.</creatorcontrib><creatorcontrib>Craik, David</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhardwaj, Gaurav</au><au>O’Connor, Jacob</au><au>Rettie, Stephen</au><au>Huang, Yen-Hua</au><au>Ramelot, Theresa A.</au><au>Mulligan, Vikram Khipple</au><au>Alpkilic, Gizem Gokce</au><au>Palmer, Jonathan</au><au>Bera, Asim K.</au><au>Bick, Matthew J.</au><au>Di Piazza, Maddalena</au><au>Li, Xinting</au><au>Hosseinzadeh, Parisa</au><au>Craven, Timothy W.</au><au>Tejero, Roberto</au><au>Lauko, Anna</au><au>Choi, Ryan</au><au>Glynn, Calina</au><au>Dong, Linlin</au><au>Griffin, Robert</au><au>van Voorhis, Wesley C.</au><au>Rodriguez, Jose</au><au>Stewart, Lance</au><au>Montelione, Gaetano T.</au><au>Craik, David</au><au>Baker, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate de novo design of membrane-traversing macrocycles</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2022-09-15</date><risdate>2022</risdate><volume>185</volume><issue>19</issue><spage>3520</spage><epage>3532.e26</epage><pages>3520-3532.e26</pages><issn>0092-8674</issn><issn>1097-4172</issn><eissn>1097-4172</eissn><abstract>We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6–12 residue size range cross membranes with an apparent permeability greater than 1 × 10−6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics.
[Display omitted]
•Computational design of diverse permeable macrocycles beyond the “rule-of-five” space•X-ray and NMR structures of designed macrocycles match their computational models•Designed macrocycles are permeable in vitro and orally bioavailable in vivo•Designed chameleonic peptides show solvent-dependent conformational switching
An investigation of the design principles of macrocyclic peptide membrane permeability and oral bioavailability enables the generation of synthetic macrocycles that fold into the predicted conformation, can cross membranes, and even adopt different conformations depending on polar versus nonpolar contexts.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36041435</pmid><doi>10.1016/j.cell.2022.07.019</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2022-09, Vol.185 (19), p.3520-3532.e26 |
issn | 0092-8674 1097-4172 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9490236 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Amides - chemistry bioavailability computational design Hydrogen Hydrogen Bonding Lipids membrane permeability oral bioavailability peptide design peptides Peptides - chemistry therapeutics |
title | Accurate de novo design of membrane-traversing macrocycles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20de%20novo%20design%20of%20membrane-traversing%20macrocycles&rft.jtitle=Cell&rft.au=Bhardwaj,%20Gaurav&rft.date=2022-09-15&rft.volume=185&rft.issue=19&rft.spage=3520&rft.epage=3532.e26&rft.pages=3520-3532.e26&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2022.07.019&rft_dat=%3Cproquest_pubme%3E2718378608%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708735428&rft_id=info:pmid/36041435&rft_els_id=S0092867422009229&rfr_iscdi=true |