Accurate de novo design of membrane-traversing macrocycles

We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2022-09, Vol.185 (19), p.3520-3532.e26
Hauptverfasser: Bhardwaj, Gaurav, O’Connor, Jacob, Rettie, Stephen, Huang, Yen-Hua, Ramelot, Theresa A., Mulligan, Vikram Khipple, Alpkilic, Gizem Gokce, Palmer, Jonathan, Bera, Asim K., Bick, Matthew J., Di Piazza, Maddalena, Li, Xinting, Hosseinzadeh, Parisa, Craven, Timothy W., Tejero, Roberto, Lauko, Anna, Choi, Ryan, Glynn, Calina, Dong, Linlin, Griffin, Robert, van Voorhis, Wesley C., Rodriguez, Jose, Stewart, Lance, Montelione, Gaetano T., Craik, David, Baker, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3532.e26
container_issue 19
container_start_page 3520
container_title Cell
container_volume 185
creator Bhardwaj, Gaurav
O’Connor, Jacob
Rettie, Stephen
Huang, Yen-Hua
Ramelot, Theresa A.
Mulligan, Vikram Khipple
Alpkilic, Gizem Gokce
Palmer, Jonathan
Bera, Asim K.
Bick, Matthew J.
Di Piazza, Maddalena
Li, Xinting
Hosseinzadeh, Parisa
Craven, Timothy W.
Tejero, Roberto
Lauko, Anna
Choi, Ryan
Glynn, Calina
Dong, Linlin
Griffin, Robert
van Voorhis, Wesley C.
Rodriguez, Jose
Stewart, Lance
Montelione, Gaetano T.
Craik, David
Baker, David
description We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6–12 residue size range cross membranes with an apparent permeability greater than 1 × 10−6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics. [Display omitted] •Computational design of diverse permeable macrocycles beyond the “rule-of-five” space•X-ray and NMR structures of designed macrocycles match their computational models•Designed macrocycles are permeable in vitro and orally bioavailable in vivo•Designed chameleonic peptides show solvent-dependent conformational switching An investigation of the design principles of macrocyclic peptide membrane permeability and oral bioavailability enables the generation of synthetic macrocycles that fold into the predicted conformation, can cross membranes, and even adopt different conformations depending on polar versus nonpolar contexts.
doi_str_mv 10.1016/j.cell.2022.07.019
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9490236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867422009229</els_id><sourcerecordid>2718378608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-877da99fe88fbf55e1346be9ec0bad9b37097d40a78b38721e7555f26b38272c3</originalsourceid><addsrcrecordid>eNqNUcFq3DAUFCWlu0n7Az0EH3Ox8yTZllRCYFnSpBDopT0LWX7earGtjeRd2L-PzKahuYSeHo83M8ybIeQrhYICra-3hcW-LxgwVoAogKoPZElBibykgp2RJYBiuaxFuSDnMW4BQFZV9YkseA0lLXm1JN9W1u6DmTBrMRv9wacZ3WbMfJcNODTBjJhPwRwwRDdussHY4O3R9hg_k4-d6SN-eZkX5Pf3u1_rh_zx5_2P9eoxtxUXUy6FaI1SHUrZNV1VIeVl3aBCC41pVcNFctyWYIRsuBSMokgmO1anjQlm-QW5Penu9s2ArcUx-en1LrjBhKP2xum3l9H90Rt_0KpUwHidBK5eBIJ_2mOc9ODiHF36ze-jZoJKLmQN8j-gIAWvSjZD2QmaAokxYPfqiIKe-9FbPTP13I8GoVM_iXT57y-vlL-FJMDNCYAp0YPDoKN1OFpsXUA76da79_SfActPoaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708735428</pqid></control><display><type>article</type><title>Accurate de novo design of membrane-traversing macrocycles</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bhardwaj, Gaurav ; O’Connor, Jacob ; Rettie, Stephen ; Huang, Yen-Hua ; Ramelot, Theresa A. ; Mulligan, Vikram Khipple ; Alpkilic, Gizem Gokce ; Palmer, Jonathan ; Bera, Asim K. ; Bick, Matthew J. ; Di Piazza, Maddalena ; Li, Xinting ; Hosseinzadeh, Parisa ; Craven, Timothy W. ; Tejero, Roberto ; Lauko, Anna ; Choi, Ryan ; Glynn, Calina ; Dong, Linlin ; Griffin, Robert ; van Voorhis, Wesley C. ; Rodriguez, Jose ; Stewart, Lance ; Montelione, Gaetano T. ; Craik, David ; Baker, David</creator><creatorcontrib>Bhardwaj, Gaurav ; O’Connor, Jacob ; Rettie, Stephen ; Huang, Yen-Hua ; Ramelot, Theresa A. ; Mulligan, Vikram Khipple ; Alpkilic, Gizem Gokce ; Palmer, Jonathan ; Bera, Asim K. ; Bick, Matthew J. ; Di Piazza, Maddalena ; Li, Xinting ; Hosseinzadeh, Parisa ; Craven, Timothy W. ; Tejero, Roberto ; Lauko, Anna ; Choi, Ryan ; Glynn, Calina ; Dong, Linlin ; Griffin, Robert ; van Voorhis, Wesley C. ; Rodriguez, Jose ; Stewart, Lance ; Montelione, Gaetano T. ; Craik, David ; Baker, David</creatorcontrib><description>We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6–12 residue size range cross membranes with an apparent permeability greater than 1 × 10−6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics. [Display omitted] •Computational design of diverse permeable macrocycles beyond the “rule-of-five” space•X-ray and NMR structures of designed macrocycles match their computational models•Designed macrocycles are permeable in vitro and orally bioavailable in vivo•Designed chameleonic peptides show solvent-dependent conformational switching An investigation of the design principles of macrocyclic peptide membrane permeability and oral bioavailability enables the generation of synthetic macrocycles that fold into the predicted conformation, can cross membranes, and even adopt different conformations depending on polar versus nonpolar contexts.</description><identifier>ISSN: 0092-8674</identifier><identifier>ISSN: 1097-4172</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2022.07.019</identifier><identifier>PMID: 36041435</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amides - chemistry ; bioavailability ; computational design ; Hydrogen ; Hydrogen Bonding ; Lipids ; membrane permeability ; oral bioavailability ; peptide design ; peptides ; Peptides - chemistry ; therapeutics</subject><ispartof>Cell, 2022-09, Vol.185 (19), p.3520-3532.e26</ispartof><rights>2022 The Author(s)</rights><rights>Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2022 The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-877da99fe88fbf55e1346be9ec0bad9b37097d40a78b38721e7555f26b38272c3</citedby><cites>FETCH-LOGICAL-c537t-877da99fe88fbf55e1346be9ec0bad9b37097d40a78b38721e7555f26b38272c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867422009229$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36041435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhardwaj, Gaurav</creatorcontrib><creatorcontrib>O’Connor, Jacob</creatorcontrib><creatorcontrib>Rettie, Stephen</creatorcontrib><creatorcontrib>Huang, Yen-Hua</creatorcontrib><creatorcontrib>Ramelot, Theresa A.</creatorcontrib><creatorcontrib>Mulligan, Vikram Khipple</creatorcontrib><creatorcontrib>Alpkilic, Gizem Gokce</creatorcontrib><creatorcontrib>Palmer, Jonathan</creatorcontrib><creatorcontrib>Bera, Asim K.</creatorcontrib><creatorcontrib>Bick, Matthew J.</creatorcontrib><creatorcontrib>Di Piazza, Maddalena</creatorcontrib><creatorcontrib>Li, Xinting</creatorcontrib><creatorcontrib>Hosseinzadeh, Parisa</creatorcontrib><creatorcontrib>Craven, Timothy W.</creatorcontrib><creatorcontrib>Tejero, Roberto</creatorcontrib><creatorcontrib>Lauko, Anna</creatorcontrib><creatorcontrib>Choi, Ryan</creatorcontrib><creatorcontrib>Glynn, Calina</creatorcontrib><creatorcontrib>Dong, Linlin</creatorcontrib><creatorcontrib>Griffin, Robert</creatorcontrib><creatorcontrib>van Voorhis, Wesley C.</creatorcontrib><creatorcontrib>Rodriguez, Jose</creatorcontrib><creatorcontrib>Stewart, Lance</creatorcontrib><creatorcontrib>Montelione, Gaetano T.</creatorcontrib><creatorcontrib>Craik, David</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><title>Accurate de novo design of membrane-traversing macrocycles</title><title>Cell</title><addtitle>Cell</addtitle><description>We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6–12 residue size range cross membranes with an apparent permeability greater than 1 × 10−6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics. [Display omitted] •Computational design of diverse permeable macrocycles beyond the “rule-of-five” space•X-ray and NMR structures of designed macrocycles match their computational models•Designed macrocycles are permeable in vitro and orally bioavailable in vivo•Designed chameleonic peptides show solvent-dependent conformational switching An investigation of the design principles of macrocyclic peptide membrane permeability and oral bioavailability enables the generation of synthetic macrocycles that fold into the predicted conformation, can cross membranes, and even adopt different conformations depending on polar versus nonpolar contexts.</description><subject>Amides - chemistry</subject><subject>bioavailability</subject><subject>computational design</subject><subject>Hydrogen</subject><subject>Hydrogen Bonding</subject><subject>Lipids</subject><subject>membrane permeability</subject><subject>oral bioavailability</subject><subject>peptide design</subject><subject>peptides</subject><subject>Peptides - chemistry</subject><subject>therapeutics</subject><issn>0092-8674</issn><issn>1097-4172</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUcFq3DAUFCWlu0n7Az0EH3Ox8yTZllRCYFnSpBDopT0LWX7earGtjeRd2L-PzKahuYSeHo83M8ybIeQrhYICra-3hcW-LxgwVoAogKoPZElBibykgp2RJYBiuaxFuSDnMW4BQFZV9YkseA0lLXm1JN9W1u6DmTBrMRv9wacZ3WbMfJcNODTBjJhPwRwwRDdussHY4O3R9hg_k4-d6SN-eZkX5Pf3u1_rh_zx5_2P9eoxtxUXUy6FaI1SHUrZNV1VIeVl3aBCC41pVcNFctyWYIRsuBSMokgmO1anjQlm-QW5Penu9s2ArcUx-en1LrjBhKP2xum3l9H90Rt_0KpUwHidBK5eBIJ_2mOc9ODiHF36ze-jZoJKLmQN8j-gIAWvSjZD2QmaAokxYPfqiIKe-9FbPTP13I8GoVM_iXT57y-vlL-FJMDNCYAp0YPDoKN1OFpsXUA76da79_SfActPoaQ</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Bhardwaj, Gaurav</creator><creator>O’Connor, Jacob</creator><creator>Rettie, Stephen</creator><creator>Huang, Yen-Hua</creator><creator>Ramelot, Theresa A.</creator><creator>Mulligan, Vikram Khipple</creator><creator>Alpkilic, Gizem Gokce</creator><creator>Palmer, Jonathan</creator><creator>Bera, Asim K.</creator><creator>Bick, Matthew J.</creator><creator>Di Piazza, Maddalena</creator><creator>Li, Xinting</creator><creator>Hosseinzadeh, Parisa</creator><creator>Craven, Timothy W.</creator><creator>Tejero, Roberto</creator><creator>Lauko, Anna</creator><creator>Choi, Ryan</creator><creator>Glynn, Calina</creator><creator>Dong, Linlin</creator><creator>Griffin, Robert</creator><creator>van Voorhis, Wesley C.</creator><creator>Rodriguez, Jose</creator><creator>Stewart, Lance</creator><creator>Montelione, Gaetano T.</creator><creator>Craik, David</creator><creator>Baker, David</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20220915</creationdate><title>Accurate de novo design of membrane-traversing macrocycles</title><author>Bhardwaj, Gaurav ; O’Connor, Jacob ; Rettie, Stephen ; Huang, Yen-Hua ; Ramelot, Theresa A. ; Mulligan, Vikram Khipple ; Alpkilic, Gizem Gokce ; Palmer, Jonathan ; Bera, Asim K. ; Bick, Matthew J. ; Di Piazza, Maddalena ; Li, Xinting ; Hosseinzadeh, Parisa ; Craven, Timothy W. ; Tejero, Roberto ; Lauko, Anna ; Choi, Ryan ; Glynn, Calina ; Dong, Linlin ; Griffin, Robert ; van Voorhis, Wesley C. ; Rodriguez, Jose ; Stewart, Lance ; Montelione, Gaetano T. ; Craik, David ; Baker, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-877da99fe88fbf55e1346be9ec0bad9b37097d40a78b38721e7555f26b38272c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amides - chemistry</topic><topic>bioavailability</topic><topic>computational design</topic><topic>Hydrogen</topic><topic>Hydrogen Bonding</topic><topic>Lipids</topic><topic>membrane permeability</topic><topic>oral bioavailability</topic><topic>peptide design</topic><topic>peptides</topic><topic>Peptides - chemistry</topic><topic>therapeutics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhardwaj, Gaurav</creatorcontrib><creatorcontrib>O’Connor, Jacob</creatorcontrib><creatorcontrib>Rettie, Stephen</creatorcontrib><creatorcontrib>Huang, Yen-Hua</creatorcontrib><creatorcontrib>Ramelot, Theresa A.</creatorcontrib><creatorcontrib>Mulligan, Vikram Khipple</creatorcontrib><creatorcontrib>Alpkilic, Gizem Gokce</creatorcontrib><creatorcontrib>Palmer, Jonathan</creatorcontrib><creatorcontrib>Bera, Asim K.</creatorcontrib><creatorcontrib>Bick, Matthew J.</creatorcontrib><creatorcontrib>Di Piazza, Maddalena</creatorcontrib><creatorcontrib>Li, Xinting</creatorcontrib><creatorcontrib>Hosseinzadeh, Parisa</creatorcontrib><creatorcontrib>Craven, Timothy W.</creatorcontrib><creatorcontrib>Tejero, Roberto</creatorcontrib><creatorcontrib>Lauko, Anna</creatorcontrib><creatorcontrib>Choi, Ryan</creatorcontrib><creatorcontrib>Glynn, Calina</creatorcontrib><creatorcontrib>Dong, Linlin</creatorcontrib><creatorcontrib>Griffin, Robert</creatorcontrib><creatorcontrib>van Voorhis, Wesley C.</creatorcontrib><creatorcontrib>Rodriguez, Jose</creatorcontrib><creatorcontrib>Stewart, Lance</creatorcontrib><creatorcontrib>Montelione, Gaetano T.</creatorcontrib><creatorcontrib>Craik, David</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhardwaj, Gaurav</au><au>O’Connor, Jacob</au><au>Rettie, Stephen</au><au>Huang, Yen-Hua</au><au>Ramelot, Theresa A.</au><au>Mulligan, Vikram Khipple</au><au>Alpkilic, Gizem Gokce</au><au>Palmer, Jonathan</au><au>Bera, Asim K.</au><au>Bick, Matthew J.</au><au>Di Piazza, Maddalena</au><au>Li, Xinting</au><au>Hosseinzadeh, Parisa</au><au>Craven, Timothy W.</au><au>Tejero, Roberto</au><au>Lauko, Anna</au><au>Choi, Ryan</au><au>Glynn, Calina</au><au>Dong, Linlin</au><au>Griffin, Robert</au><au>van Voorhis, Wesley C.</au><au>Rodriguez, Jose</au><au>Stewart, Lance</au><au>Montelione, Gaetano T.</au><au>Craik, David</au><au>Baker, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate de novo design of membrane-traversing macrocycles</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2022-09-15</date><risdate>2022</risdate><volume>185</volume><issue>19</issue><spage>3520</spage><epage>3532.e26</epage><pages>3520-3532.e26</pages><issn>0092-8674</issn><issn>1097-4172</issn><eissn>1097-4172</eissn><abstract>We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6–12 residue size range cross membranes with an apparent permeability greater than 1 × 10−6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics. [Display omitted] •Computational design of diverse permeable macrocycles beyond the “rule-of-five” space•X-ray and NMR structures of designed macrocycles match their computational models•Designed macrocycles are permeable in vitro and orally bioavailable in vivo•Designed chameleonic peptides show solvent-dependent conformational switching An investigation of the design principles of macrocyclic peptide membrane permeability and oral bioavailability enables the generation of synthetic macrocycles that fold into the predicted conformation, can cross membranes, and even adopt different conformations depending on polar versus nonpolar contexts.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36041435</pmid><doi>10.1016/j.cell.2022.07.019</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2022-09, Vol.185 (19), p.3520-3532.e26
issn 0092-8674
1097-4172
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9490236
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Amides - chemistry
bioavailability
computational design
Hydrogen
Hydrogen Bonding
Lipids
membrane permeability
oral bioavailability
peptide design
peptides
Peptides - chemistry
therapeutics
title Accurate de novo design of membrane-traversing macrocycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20de%20novo%20design%20of%20membrane-traversing%20macrocycles&rft.jtitle=Cell&rft.au=Bhardwaj,%20Gaurav&rft.date=2022-09-15&rft.volume=185&rft.issue=19&rft.spage=3520&rft.epage=3532.e26&rft.pages=3520-3532.e26&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2022.07.019&rft_dat=%3Cproquest_pubme%3E2718378608%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708735428&rft_id=info:pmid/36041435&rft_els_id=S0092867422009229&rfr_iscdi=true