Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density
Biomolecular condensates are self-organized membraneless bodies involved in many critical cellular activities, including ribosome biogenesis, protein synthesis, and gene transcription. Aliphatic alcohols are commonly used to study biomolecular condensates, but their effects on transcription are uncl...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2022-10, Vol.298 (10), p.102365, Article 102365 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 102365 |
container_title | The Journal of biological chemistry |
container_volume | 298 |
creator | Meduri, Rajyalakshmi Rubio, Linda S. Mohajan, Suman Gross, David S. |
description | Biomolecular condensates are self-organized membraneless bodies involved in many critical cellular activities, including ribosome biogenesis, protein synthesis, and gene transcription. Aliphatic alcohols are commonly used to study biomolecular condensates, but their effects on transcription are unclear. Here, we explore the impact of the aliphatic dialcohol, 1,6-hexanediol (1,6-HD), on Pol II transcription and nucleosome occupancy in budding yeast. As expected, 1,6-HD, a reagent effective in disrupting biomolecular condensates, strongly suppressed the thermal stress–induced transcription of Heat Shock Factor 1–regulated genes that have previously been shown to physically interact and coalesce into intranuclear condensates. Surprisingly, the isomeric dialcohol, 2,5-HD, typically used as a negative control, abrogated Heat Shock Factor 1–target gene transcription under the same conditions. Each reagent also abolished the transcription of genes that do not detectably coalesce, including Msn2/Msn4-regulated heat-inducible genes and constitutively expressed housekeeping genes. Thus, at elevated temperature (39 °C), HDs potently inhibit the transcription of disparate genes and as demonstrated by chromatin immunoprecipitation do so by abolishing occupancy of RNA polymerase in chromatin. Concurrently, histone H3 density increased at least twofold within all gene coding and regulatory regions examined, including quiescent euchromatic loci, silent heterochromatic loci, and Pol III-transcribed loci. Our results offer a caveat for the use of HDs in studying the role of condensates in transcriptional control and provide evidence that exposure to these reagents elicits a widespread increase in nucleosome density and a concomitant loss of both Pol II and Pol III transcription. |
doi_str_mv | 10.1016/j.jbc.2022.102365 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9486037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925822008080</els_id><sourcerecordid>2702186933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-261ea42d3f98a5bd10620392c1de6b4090668259ce13ea61d5937885270160053</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVJqB23P6CXsMdc1tXHSl4RCASTNIVAckihN6GVxrbMWtpKssH_PnLtmvZSXYTQM88M8yL0heApwUR8XU_XnZlSTGl5Uyb4BzQmuGU14-TnBRpjTEktKW9H6CqlNS6nkeQjGjEuBWsYHSPzutIJ6gSDjjq74Cvts14G71JO1RAy-NzvK-dXrnO5ylH7ZKIbTqituhi0_U2YCEVV-a3pIaSwgcqCTy7vP6HLhe4TfD7dE_Tj8eFt_lQ_v3z7Pr9_rk3DSa6pIKAbatlCtpp3lmBBMZPUEAuia7DEQrSUSwOEgRbEcslmbcvprOwCY84m6O7oHbbdBqwpo0fdqyG6jY57FbRT__54t1LLsFOyaQVmsyK4OQli-LWFlNXGJQN9rz2EbVKlEyWtkIwVlBxRE0NKERbnNgSrQzhqrUo46hCOOoZTaq7_nu9c8SeNAtweAShb2jmIKhkH3oB1EUxWNrj_6N8B3fGhmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702186933</pqid></control><display><type>article</type><title>Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Meduri, Rajyalakshmi ; Rubio, Linda S. ; Mohajan, Suman ; Gross, David S.</creator><creatorcontrib>Meduri, Rajyalakshmi ; Rubio, Linda S. ; Mohajan, Suman ; Gross, David S.</creatorcontrib><description>Biomolecular condensates are self-organized membraneless bodies involved in many critical cellular activities, including ribosome biogenesis, protein synthesis, and gene transcription. Aliphatic alcohols are commonly used to study biomolecular condensates, but their effects on transcription are unclear. Here, we explore the impact of the aliphatic dialcohol, 1,6-hexanediol (1,6-HD), on Pol II transcription and nucleosome occupancy in budding yeast. As expected, 1,6-HD, a reagent effective in disrupting biomolecular condensates, strongly suppressed the thermal stress–induced transcription of Heat Shock Factor 1–regulated genes that have previously been shown to physically interact and coalesce into intranuclear condensates. Surprisingly, the isomeric dialcohol, 2,5-HD, typically used as a negative control, abrogated Heat Shock Factor 1–target gene transcription under the same conditions. Each reagent also abolished the transcription of genes that do not detectably coalesce, including Msn2/Msn4-regulated heat-inducible genes and constitutively expressed housekeeping genes. Thus, at elevated temperature (39 °C), HDs potently inhibit the transcription of disparate genes and as demonstrated by chromatin immunoprecipitation do so by abolishing occupancy of RNA polymerase in chromatin. Concurrently, histone H3 density increased at least twofold within all gene coding and regulatory regions examined, including quiescent euchromatic loci, silent heterochromatic loci, and Pol III-transcribed loci. Our results offer a caveat for the use of HDs in studying the role of condensates in transcriptional control and provide evidence that exposure to these reagents elicits a widespread increase in nucleosome density and a concomitant loss of both Pol II and Pol III transcription.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2022.102365</identifier><identifier>PMID: 35963432</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>budding yeast ; chromatin ; Chromatin - chemistry ; Chromatin - metabolism ; Chromatin Immunoprecipitation ; Glycols - pharmacology ; Heat Shock Factor 1 ; Heat Shock Protein gene coalescence ; hexanediol ; Msn2/Msn4 ; Nucleosomes - genetics ; phase separation ; RNA Pol II ; RNA Pol III ; RNA Polymerase II - genetics ; RNA Polymerase II - metabolism ; Transcription, Genetic ; transcriptional condensates</subject><ispartof>The Journal of biological chemistry, 2022-10, Vol.298 (10), p.102365, Article 102365</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-261ea42d3f98a5bd10620392c1de6b4090668259ce13ea61d5937885270160053</citedby><cites>FETCH-LOGICAL-c451t-261ea42d3f98a5bd10620392c1de6b4090668259ce13ea61d5937885270160053</cites><orcidid>0000-0002-8913-9425 ; 0000-0002-7957-8790 ; 0000-0002-2593-0576 ; 0000-0002-7260-6971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486037/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486037/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35963432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meduri, Rajyalakshmi</creatorcontrib><creatorcontrib>Rubio, Linda S.</creatorcontrib><creatorcontrib>Mohajan, Suman</creatorcontrib><creatorcontrib>Gross, David S.</creatorcontrib><title>Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Biomolecular condensates are self-organized membraneless bodies involved in many critical cellular activities, including ribosome biogenesis, protein synthesis, and gene transcription. Aliphatic alcohols are commonly used to study biomolecular condensates, but their effects on transcription are unclear. Here, we explore the impact of the aliphatic dialcohol, 1,6-hexanediol (1,6-HD), on Pol II transcription and nucleosome occupancy in budding yeast. As expected, 1,6-HD, a reagent effective in disrupting biomolecular condensates, strongly suppressed the thermal stress–induced transcription of Heat Shock Factor 1–regulated genes that have previously been shown to physically interact and coalesce into intranuclear condensates. Surprisingly, the isomeric dialcohol, 2,5-HD, typically used as a negative control, abrogated Heat Shock Factor 1–target gene transcription under the same conditions. Each reagent also abolished the transcription of genes that do not detectably coalesce, including Msn2/Msn4-regulated heat-inducible genes and constitutively expressed housekeeping genes. Thus, at elevated temperature (39 °C), HDs potently inhibit the transcription of disparate genes and as demonstrated by chromatin immunoprecipitation do so by abolishing occupancy of RNA polymerase in chromatin. Concurrently, histone H3 density increased at least twofold within all gene coding and regulatory regions examined, including quiescent euchromatic loci, silent heterochromatic loci, and Pol III-transcribed loci. Our results offer a caveat for the use of HDs in studying the role of condensates in transcriptional control and provide evidence that exposure to these reagents elicits a widespread increase in nucleosome density and a concomitant loss of both Pol II and Pol III transcription.</description><subject>budding yeast</subject><subject>chromatin</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Immunoprecipitation</subject><subject>Glycols - pharmacology</subject><subject>Heat Shock Factor 1</subject><subject>Heat Shock Protein gene coalescence</subject><subject>hexanediol</subject><subject>Msn2/Msn4</subject><subject>Nucleosomes - genetics</subject><subject>phase separation</subject><subject>RNA Pol II</subject><subject>RNA Pol III</subject><subject>RNA Polymerase II - genetics</subject><subject>RNA Polymerase II - metabolism</subject><subject>Transcription, Genetic</subject><subject>transcriptional condensates</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1rGzEQhkVJqB23P6CXsMdc1tXHSl4RCASTNIVAckihN6GVxrbMWtpKssH_PnLtmvZSXYTQM88M8yL0heApwUR8XU_XnZlSTGl5Uyb4BzQmuGU14-TnBRpjTEktKW9H6CqlNS6nkeQjGjEuBWsYHSPzutIJ6gSDjjq74Cvts14G71JO1RAy-NzvK-dXrnO5ylH7ZKIbTqituhi0_U2YCEVV-a3pIaSwgcqCTy7vP6HLhe4TfD7dE_Tj8eFt_lQ_v3z7Pr9_rk3DSa6pIKAbatlCtpp3lmBBMZPUEAuia7DEQrSUSwOEgRbEcslmbcvprOwCY84m6O7oHbbdBqwpo0fdqyG6jY57FbRT__54t1LLsFOyaQVmsyK4OQli-LWFlNXGJQN9rz2EbVKlEyWtkIwVlBxRE0NKERbnNgSrQzhqrUo46hCOOoZTaq7_nu9c8SeNAtweAShb2jmIKhkH3oB1EUxWNrj_6N8B3fGhmQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Meduri, Rajyalakshmi</creator><creator>Rubio, Linda S.</creator><creator>Mohajan, Suman</creator><creator>Gross, David S.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8913-9425</orcidid><orcidid>https://orcid.org/0000-0002-7957-8790</orcidid><orcidid>https://orcid.org/0000-0002-2593-0576</orcidid><orcidid>https://orcid.org/0000-0002-7260-6971</orcidid></search><sort><creationdate>20221001</creationdate><title>Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density</title><author>Meduri, Rajyalakshmi ; Rubio, Linda S. ; Mohajan, Suman ; Gross, David S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-261ea42d3f98a5bd10620392c1de6b4090668259ce13ea61d5937885270160053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>budding yeast</topic><topic>chromatin</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Immunoprecipitation</topic><topic>Glycols - pharmacology</topic><topic>Heat Shock Factor 1</topic><topic>Heat Shock Protein gene coalescence</topic><topic>hexanediol</topic><topic>Msn2/Msn4</topic><topic>Nucleosomes - genetics</topic><topic>phase separation</topic><topic>RNA Pol II</topic><topic>RNA Pol III</topic><topic>RNA Polymerase II - genetics</topic><topic>RNA Polymerase II - metabolism</topic><topic>Transcription, Genetic</topic><topic>transcriptional condensates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meduri, Rajyalakshmi</creatorcontrib><creatorcontrib>Rubio, Linda S.</creatorcontrib><creatorcontrib>Mohajan, Suman</creatorcontrib><creatorcontrib>Gross, David S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meduri, Rajyalakshmi</au><au>Rubio, Linda S.</au><au>Mohajan, Suman</au><au>Gross, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>298</volume><issue>10</issue><spage>102365</spage><pages>102365-</pages><artnum>102365</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>Biomolecular condensates are self-organized membraneless bodies involved in many critical cellular activities, including ribosome biogenesis, protein synthesis, and gene transcription. Aliphatic alcohols are commonly used to study biomolecular condensates, but their effects on transcription are unclear. Here, we explore the impact of the aliphatic dialcohol, 1,6-hexanediol (1,6-HD), on Pol II transcription and nucleosome occupancy in budding yeast. As expected, 1,6-HD, a reagent effective in disrupting biomolecular condensates, strongly suppressed the thermal stress–induced transcription of Heat Shock Factor 1–regulated genes that have previously been shown to physically interact and coalesce into intranuclear condensates. Surprisingly, the isomeric dialcohol, 2,5-HD, typically used as a negative control, abrogated Heat Shock Factor 1–target gene transcription under the same conditions. Each reagent also abolished the transcription of genes that do not detectably coalesce, including Msn2/Msn4-regulated heat-inducible genes and constitutively expressed housekeeping genes. Thus, at elevated temperature (39 °C), HDs potently inhibit the transcription of disparate genes and as demonstrated by chromatin immunoprecipitation do so by abolishing occupancy of RNA polymerase in chromatin. Concurrently, histone H3 density increased at least twofold within all gene coding and regulatory regions examined, including quiescent euchromatic loci, silent heterochromatic loci, and Pol III-transcribed loci. Our results offer a caveat for the use of HDs in studying the role of condensates in transcriptional control and provide evidence that exposure to these reagents elicits a widespread increase in nucleosome density and a concomitant loss of both Pol II and Pol III transcription.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35963432</pmid><doi>10.1016/j.jbc.2022.102365</doi><orcidid>https://orcid.org/0000-0002-8913-9425</orcidid><orcidid>https://orcid.org/0000-0002-7957-8790</orcidid><orcidid>https://orcid.org/0000-0002-2593-0576</orcidid><orcidid>https://orcid.org/0000-0002-7260-6971</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2022-10, Vol.298 (10), p.102365, Article 102365 |
issn | 0021-9258 1083-351X 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9486037 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | budding yeast chromatin Chromatin - chemistry Chromatin - metabolism Chromatin Immunoprecipitation Glycols - pharmacology Heat Shock Factor 1 Heat Shock Protein gene coalescence hexanediol Msn2/Msn4 Nucleosomes - genetics phase separation RNA Pol II RNA Pol III RNA Polymerase II - genetics RNA Polymerase II - metabolism Transcription, Genetic transcriptional condensates |
title | Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-separation%20antagonists%20potently%20inhibit%20transcription%20and%20broadly%20increase%20nucleosome%20density&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Meduri,%20Rajyalakshmi&rft.date=2022-10-01&rft.volume=298&rft.issue=10&rft.spage=102365&rft.pages=102365-&rft.artnum=102365&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2022.102365&rft_dat=%3Cproquest_pubme%3E2702186933%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2702186933&rft_id=info:pmid/35963432&rft_els_id=S0021925822008080&rfr_iscdi=true |