Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density

Biomolecular condensates are self-organized membraneless bodies involved in many critical cellular activities, including ribosome biogenesis, protein synthesis, and gene transcription. Aliphatic alcohols are commonly used to study biomolecular condensates, but their effects on transcription are uncl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2022-10, Vol.298 (10), p.102365, Article 102365
Hauptverfasser: Meduri, Rajyalakshmi, Rubio, Linda S., Mohajan, Suman, Gross, David S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 102365
container_title The Journal of biological chemistry
container_volume 298
creator Meduri, Rajyalakshmi
Rubio, Linda S.
Mohajan, Suman
Gross, David S.
description Biomolecular condensates are self-organized membraneless bodies involved in many critical cellular activities, including ribosome biogenesis, protein synthesis, and gene transcription. Aliphatic alcohols are commonly used to study biomolecular condensates, but their effects on transcription are unclear. Here, we explore the impact of the aliphatic dialcohol, 1,6-hexanediol (1,6-HD), on Pol II transcription and nucleosome occupancy in budding yeast. As expected, 1,6-HD, a reagent effective in disrupting biomolecular condensates, strongly suppressed the thermal stress–induced transcription of Heat Shock Factor 1–regulated genes that have previously been shown to physically interact and coalesce into intranuclear condensates. Surprisingly, the isomeric dialcohol, 2,5-HD, typically used as a negative control, abrogated Heat Shock Factor 1–target gene transcription under the same conditions. Each reagent also abolished the transcription of genes that do not detectably coalesce, including Msn2/Msn4-regulated heat-inducible genes and constitutively expressed housekeeping genes. Thus, at elevated temperature (39 °C), HDs potently inhibit the transcription of disparate genes and as demonstrated by chromatin immunoprecipitation do so by abolishing occupancy of RNA polymerase in chromatin. Concurrently, histone H3 density increased at least twofold within all gene coding and regulatory regions examined, including quiescent euchromatic loci, silent heterochromatic loci, and Pol III-transcribed loci. Our results offer a caveat for the use of HDs in studying the role of condensates in transcriptional control and provide evidence that exposure to these reagents elicits a widespread increase in nucleosome density and a concomitant loss of both Pol II and Pol III transcription.
doi_str_mv 10.1016/j.jbc.2022.102365
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9486037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925822008080</els_id><sourcerecordid>2702186933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-261ea42d3f98a5bd10620392c1de6b4090668259ce13ea61d5937885270160053</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVJqB23P6CXsMdc1tXHSl4RCASTNIVAckihN6GVxrbMWtpKssH_PnLtmvZSXYTQM88M8yL0heApwUR8XU_XnZlSTGl5Uyb4BzQmuGU14-TnBRpjTEktKW9H6CqlNS6nkeQjGjEuBWsYHSPzutIJ6gSDjjq74Cvts14G71JO1RAy-NzvK-dXrnO5ylH7ZKIbTqituhi0_U2YCEVV-a3pIaSwgcqCTy7vP6HLhe4TfD7dE_Tj8eFt_lQ_v3z7Pr9_rk3DSa6pIKAbatlCtpp3lmBBMZPUEAuia7DEQrSUSwOEgRbEcslmbcvprOwCY84m6O7oHbbdBqwpo0fdqyG6jY57FbRT__54t1LLsFOyaQVmsyK4OQli-LWFlNXGJQN9rz2EbVKlEyWtkIwVlBxRE0NKERbnNgSrQzhqrUo46hCOOoZTaq7_nu9c8SeNAtweAShb2jmIKhkH3oB1EUxWNrj_6N8B3fGhmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702186933</pqid></control><display><type>article</type><title>Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Meduri, Rajyalakshmi ; Rubio, Linda S. ; Mohajan, Suman ; Gross, David S.</creator><creatorcontrib>Meduri, Rajyalakshmi ; Rubio, Linda S. ; Mohajan, Suman ; Gross, David S.</creatorcontrib><description>Biomolecular condensates are self-organized membraneless bodies involved in many critical cellular activities, including ribosome biogenesis, protein synthesis, and gene transcription. Aliphatic alcohols are commonly used to study biomolecular condensates, but their effects on transcription are unclear. Here, we explore the impact of the aliphatic dialcohol, 1,6-hexanediol (1,6-HD), on Pol II transcription and nucleosome occupancy in budding yeast. As expected, 1,6-HD, a reagent effective in disrupting biomolecular condensates, strongly suppressed the thermal stress–induced transcription of Heat Shock Factor 1–regulated genes that have previously been shown to physically interact and coalesce into intranuclear condensates. Surprisingly, the isomeric dialcohol, 2,5-HD, typically used as a negative control, abrogated Heat Shock Factor 1–target gene transcription under the same conditions. Each reagent also abolished the transcription of genes that do not detectably coalesce, including Msn2/Msn4-regulated heat-inducible genes and constitutively expressed housekeeping genes. Thus, at elevated temperature (39 °C), HDs potently inhibit the transcription of disparate genes and as demonstrated by chromatin immunoprecipitation do so by abolishing occupancy of RNA polymerase in chromatin. Concurrently, histone H3 density increased at least twofold within all gene coding and regulatory regions examined, including quiescent euchromatic loci, silent heterochromatic loci, and Pol III-transcribed loci. Our results offer a caveat for the use of HDs in studying the role of condensates in transcriptional control and provide evidence that exposure to these reagents elicits a widespread increase in nucleosome density and a concomitant loss of both Pol II and Pol III transcription.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2022.102365</identifier><identifier>PMID: 35963432</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>budding yeast ; chromatin ; Chromatin - chemistry ; Chromatin - metabolism ; Chromatin Immunoprecipitation ; Glycols - pharmacology ; Heat Shock Factor 1 ; Heat Shock Protein gene coalescence ; hexanediol ; Msn2/Msn4 ; Nucleosomes - genetics ; phase separation ; RNA Pol II ; RNA Pol III ; RNA Polymerase II - genetics ; RNA Polymerase II - metabolism ; Transcription, Genetic ; transcriptional condensates</subject><ispartof>The Journal of biological chemistry, 2022-10, Vol.298 (10), p.102365, Article 102365</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-261ea42d3f98a5bd10620392c1de6b4090668259ce13ea61d5937885270160053</citedby><cites>FETCH-LOGICAL-c451t-261ea42d3f98a5bd10620392c1de6b4090668259ce13ea61d5937885270160053</cites><orcidid>0000-0002-8913-9425 ; 0000-0002-7957-8790 ; 0000-0002-2593-0576 ; 0000-0002-7260-6971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486037/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486037/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35963432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meduri, Rajyalakshmi</creatorcontrib><creatorcontrib>Rubio, Linda S.</creatorcontrib><creatorcontrib>Mohajan, Suman</creatorcontrib><creatorcontrib>Gross, David S.</creatorcontrib><title>Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Biomolecular condensates are self-organized membraneless bodies involved in many critical cellular activities, including ribosome biogenesis, protein synthesis, and gene transcription. Aliphatic alcohols are commonly used to study biomolecular condensates, but their effects on transcription are unclear. Here, we explore the impact of the aliphatic dialcohol, 1,6-hexanediol (1,6-HD), on Pol II transcription and nucleosome occupancy in budding yeast. As expected, 1,6-HD, a reagent effective in disrupting biomolecular condensates, strongly suppressed the thermal stress–induced transcription of Heat Shock Factor 1–regulated genes that have previously been shown to physically interact and coalesce into intranuclear condensates. Surprisingly, the isomeric dialcohol, 2,5-HD, typically used as a negative control, abrogated Heat Shock Factor 1–target gene transcription under the same conditions. Each reagent also abolished the transcription of genes that do not detectably coalesce, including Msn2/Msn4-regulated heat-inducible genes and constitutively expressed housekeeping genes. Thus, at elevated temperature (39 °C), HDs potently inhibit the transcription of disparate genes and as demonstrated by chromatin immunoprecipitation do so by abolishing occupancy of RNA polymerase in chromatin. Concurrently, histone H3 density increased at least twofold within all gene coding and regulatory regions examined, including quiescent euchromatic loci, silent heterochromatic loci, and Pol III-transcribed loci. Our results offer a caveat for the use of HDs in studying the role of condensates in transcriptional control and provide evidence that exposure to these reagents elicits a widespread increase in nucleosome density and a concomitant loss of both Pol II and Pol III transcription.</description><subject>budding yeast</subject><subject>chromatin</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Immunoprecipitation</subject><subject>Glycols - pharmacology</subject><subject>Heat Shock Factor 1</subject><subject>Heat Shock Protein gene coalescence</subject><subject>hexanediol</subject><subject>Msn2/Msn4</subject><subject>Nucleosomes - genetics</subject><subject>phase separation</subject><subject>RNA Pol II</subject><subject>RNA Pol III</subject><subject>RNA Polymerase II - genetics</subject><subject>RNA Polymerase II - metabolism</subject><subject>Transcription, Genetic</subject><subject>transcriptional condensates</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1rGzEQhkVJqB23P6CXsMdc1tXHSl4RCASTNIVAckihN6GVxrbMWtpKssH_PnLtmvZSXYTQM88M8yL0heApwUR8XU_XnZlSTGl5Uyb4BzQmuGU14-TnBRpjTEktKW9H6CqlNS6nkeQjGjEuBWsYHSPzutIJ6gSDjjq74Cvts14G71JO1RAy-NzvK-dXrnO5ylH7ZKIbTqituhi0_U2YCEVV-a3pIaSwgcqCTy7vP6HLhe4TfD7dE_Tj8eFt_lQ_v3z7Pr9_rk3DSa6pIKAbatlCtpp3lmBBMZPUEAuia7DEQrSUSwOEgRbEcslmbcvprOwCY84m6O7oHbbdBqwpo0fdqyG6jY57FbRT__54t1LLsFOyaQVmsyK4OQli-LWFlNXGJQN9rz2EbVKlEyWtkIwVlBxRE0NKERbnNgSrQzhqrUo46hCOOoZTaq7_nu9c8SeNAtweAShb2jmIKhkH3oB1EUxWNrj_6N8B3fGhmQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Meduri, Rajyalakshmi</creator><creator>Rubio, Linda S.</creator><creator>Mohajan, Suman</creator><creator>Gross, David S.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8913-9425</orcidid><orcidid>https://orcid.org/0000-0002-7957-8790</orcidid><orcidid>https://orcid.org/0000-0002-2593-0576</orcidid><orcidid>https://orcid.org/0000-0002-7260-6971</orcidid></search><sort><creationdate>20221001</creationdate><title>Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density</title><author>Meduri, Rajyalakshmi ; Rubio, Linda S. ; Mohajan, Suman ; Gross, David S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-261ea42d3f98a5bd10620392c1de6b4090668259ce13ea61d5937885270160053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>budding yeast</topic><topic>chromatin</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Immunoprecipitation</topic><topic>Glycols - pharmacology</topic><topic>Heat Shock Factor 1</topic><topic>Heat Shock Protein gene coalescence</topic><topic>hexanediol</topic><topic>Msn2/Msn4</topic><topic>Nucleosomes - genetics</topic><topic>phase separation</topic><topic>RNA Pol II</topic><topic>RNA Pol III</topic><topic>RNA Polymerase II - genetics</topic><topic>RNA Polymerase II - metabolism</topic><topic>Transcription, Genetic</topic><topic>transcriptional condensates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meduri, Rajyalakshmi</creatorcontrib><creatorcontrib>Rubio, Linda S.</creatorcontrib><creatorcontrib>Mohajan, Suman</creatorcontrib><creatorcontrib>Gross, David S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meduri, Rajyalakshmi</au><au>Rubio, Linda S.</au><au>Mohajan, Suman</au><au>Gross, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>298</volume><issue>10</issue><spage>102365</spage><pages>102365-</pages><artnum>102365</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>Biomolecular condensates are self-organized membraneless bodies involved in many critical cellular activities, including ribosome biogenesis, protein synthesis, and gene transcription. Aliphatic alcohols are commonly used to study biomolecular condensates, but their effects on transcription are unclear. Here, we explore the impact of the aliphatic dialcohol, 1,6-hexanediol (1,6-HD), on Pol II transcription and nucleosome occupancy in budding yeast. As expected, 1,6-HD, a reagent effective in disrupting biomolecular condensates, strongly suppressed the thermal stress–induced transcription of Heat Shock Factor 1–regulated genes that have previously been shown to physically interact and coalesce into intranuclear condensates. Surprisingly, the isomeric dialcohol, 2,5-HD, typically used as a negative control, abrogated Heat Shock Factor 1–target gene transcription under the same conditions. Each reagent also abolished the transcription of genes that do not detectably coalesce, including Msn2/Msn4-regulated heat-inducible genes and constitutively expressed housekeeping genes. Thus, at elevated temperature (39 °C), HDs potently inhibit the transcription of disparate genes and as demonstrated by chromatin immunoprecipitation do so by abolishing occupancy of RNA polymerase in chromatin. Concurrently, histone H3 density increased at least twofold within all gene coding and regulatory regions examined, including quiescent euchromatic loci, silent heterochromatic loci, and Pol III-transcribed loci. Our results offer a caveat for the use of HDs in studying the role of condensates in transcriptional control and provide evidence that exposure to these reagents elicits a widespread increase in nucleosome density and a concomitant loss of both Pol II and Pol III transcription.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35963432</pmid><doi>10.1016/j.jbc.2022.102365</doi><orcidid>https://orcid.org/0000-0002-8913-9425</orcidid><orcidid>https://orcid.org/0000-0002-7957-8790</orcidid><orcidid>https://orcid.org/0000-0002-2593-0576</orcidid><orcidid>https://orcid.org/0000-0002-7260-6971</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2022-10, Vol.298 (10), p.102365, Article 102365
issn 0021-9258
1083-351X
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9486037
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects budding yeast
chromatin
Chromatin - chemistry
Chromatin - metabolism
Chromatin Immunoprecipitation
Glycols - pharmacology
Heat Shock Factor 1
Heat Shock Protein gene coalescence
hexanediol
Msn2/Msn4
Nucleosomes - genetics
phase separation
RNA Pol II
RNA Pol III
RNA Polymerase II - genetics
RNA Polymerase II - metabolism
Transcription, Genetic
transcriptional condensates
title Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-separation%20antagonists%20potently%20inhibit%20transcription%20and%20broadly%20increase%20nucleosome%20density&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Meduri,%20Rajyalakshmi&rft.date=2022-10-01&rft.volume=298&rft.issue=10&rft.spage=102365&rft.pages=102365-&rft.artnum=102365&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2022.102365&rft_dat=%3Cproquest_pubme%3E2702186933%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2702186933&rft_id=info:pmid/35963432&rft_els_id=S0021925822008080&rfr_iscdi=true