Application of Quantum Chemical Topology Force Field FFLUX to Condensed Matter Simulations: Liquid Water
We present here the first application of the quantum chemical topology force field FFLUX to condensed matter simulations. FFLUX offers many-body potential energy surfaces learnt exclusively from ab initio data using Gaussian process regression. FFLUX also includes high-rank, polarizable multipole mo...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2022-09, Vol.18 (9), p.5577-5588 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5588 |
---|---|
container_issue | 9 |
container_start_page | 5577 |
container_title | Journal of chemical theory and computation |
container_volume | 18 |
creator | Symons, Benjamin C. B. Popelier, Paul L. A. |
description | We present here the first application of the quantum chemical topology force field FFLUX to condensed matter simulations. FFLUX offers many-body potential energy surfaces learnt exclusively from ab initio data using Gaussian process regression. FFLUX also includes high-rank, polarizable multipole moments (up to quadrupole moments in this work) that are learnt from the same ab initio calculations as the potential energy surfaces. Many-body effects (where a body is an atom) and polarization are captured by the machine learning models. The choice to use machine learning in this way allows the force field’s representation of reality to be improved (e.g., by including higher order many-body effects) with little detriment to the computational scaling of the code. In this manner, FFLUX is inherently future-proof. The “plug and play” nature of the machine learning models also ensures that FFLUX can be applied to any system of interest, not just liquid water. In this work we study liquid water across a range of temperatures and compare the predicted bulk properties to experiment as well as other state-of-the-art force fields AMOEBA(+CF), HIPPO, MB-Pol and SIBFA21. We find that FFLUX finds a place amongst these. |
doi_str_mv | 10.1021/acs.jctc.2c00311 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9476653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700314860</sourcerecordid><originalsourceid>FETCH-LOGICAL-a368t-1b151ebd25feccdc678e07adf20042bdfc072fb637d1cff9518cfae2f689be9a3</originalsourceid><addsrcrecordid>eNp1kc9rFDEYhoMotlbvHgNePLhrfsxkZjwIZXFUWBGxRW8hk3zpZslMpklG6H9vtrsWFDwl5H2-hyQvQi8pWVPC6Ful03qvs14zTQin9BE6p3XVrTrBxOOHPW3P0LOU9gXhFeNP0RmvO961TJyj3eU8e6dVdmHCweJvi5ryMuLNDsZy7PFVmIMPN3e4D1ED7h14g_t-e_0T54A3YTIwJTD4i8oZIv7uxsXf29I7vHW3izP4hyrJc_TEKp_gxWm9QNf9h6vNp9X268fPm8vtSnHR5hUdaE1hMKy2oLXRommBNMpYRkjFBmM1aZgdBG8M1dZ2NW21VcCsaLsBOsUv0Pujd16GEYyGKUfl5RzdqOKdDMrJv5PJ7eRN-CW7qhGi5kXw-iSI4XaBlOXokgbv1QRhSZI1h6-uWkEK-uofdB-WOJXnFYrWLa9ILQpFjpSOIaUI9uEylMhDjbLUKA81ylONZeTNceQ--eP8L_4b0lyhWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715834056</pqid></control><display><type>article</type><title>Application of Quantum Chemical Topology Force Field FFLUX to Condensed Matter Simulations: Liquid Water</title><source>ACS Publications</source><creator>Symons, Benjamin C. B. ; Popelier, Paul L. A.</creator><creatorcontrib>Symons, Benjamin C. B. ; Popelier, Paul L. A.</creatorcontrib><description>We present here the first application of the quantum chemical topology force field FFLUX to condensed matter simulations. FFLUX offers many-body potential energy surfaces learnt exclusively from ab initio data using Gaussian process regression. FFLUX also includes high-rank, polarizable multipole moments (up to quadrupole moments in this work) that are learnt from the same ab initio calculations as the potential energy surfaces. Many-body effects (where a body is an atom) and polarization are captured by the machine learning models. The choice to use machine learning in this way allows the force field’s representation of reality to be improved (e.g., by including higher order many-body effects) with little detriment to the computational scaling of the code. In this manner, FFLUX is inherently future-proof. The “plug and play” nature of the machine learning models also ensures that FFLUX can be applied to any system of interest, not just liquid water. In this work we study liquid water across a range of temperatures and compare the predicted bulk properties to experiment as well as other state-of-the-art force fields AMOEBA(+CF), HIPPO, MB-Pol and SIBFA21. We find that FFLUX finds a place amongst these.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.2c00311</identifier><identifier>PMID: 35939826</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Amoeba ; Condensed Matter, Interfaces, and Materials ; Gaussian process ; Machine learning ; Multipoles ; Potential energy ; Quadrupoles ; Quantum chemistry ; Topology ; Water</subject><ispartof>Journal of chemical theory and computation, 2022-09, Vol.18 (9), p.5577-5588</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Sep 13, 2022</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a368t-1b151ebd25feccdc678e07adf20042bdfc072fb637d1cff9518cfae2f689be9a3</citedby><cites>FETCH-LOGICAL-a368t-1b151ebd25feccdc678e07adf20042bdfc072fb637d1cff9518cfae2f689be9a3</cites><orcidid>0000-0001-9053-1363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.2c00311$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.2c00311$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Symons, Benjamin C. B.</creatorcontrib><creatorcontrib>Popelier, Paul L. A.</creatorcontrib><title>Application of Quantum Chemical Topology Force Field FFLUX to Condensed Matter Simulations: Liquid Water</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We present here the first application of the quantum chemical topology force field FFLUX to condensed matter simulations. FFLUX offers many-body potential energy surfaces learnt exclusively from ab initio data using Gaussian process regression. FFLUX also includes high-rank, polarizable multipole moments (up to quadrupole moments in this work) that are learnt from the same ab initio calculations as the potential energy surfaces. Many-body effects (where a body is an atom) and polarization are captured by the machine learning models. The choice to use machine learning in this way allows the force field’s representation of reality to be improved (e.g., by including higher order many-body effects) with little detriment to the computational scaling of the code. In this manner, FFLUX is inherently future-proof. The “plug and play” nature of the machine learning models also ensures that FFLUX can be applied to any system of interest, not just liquid water. In this work we study liquid water across a range of temperatures and compare the predicted bulk properties to experiment as well as other state-of-the-art force fields AMOEBA(+CF), HIPPO, MB-Pol and SIBFA21. We find that FFLUX finds a place amongst these.</description><subject>Amoeba</subject><subject>Condensed Matter, Interfaces, and Materials</subject><subject>Gaussian process</subject><subject>Machine learning</subject><subject>Multipoles</subject><subject>Potential energy</subject><subject>Quadrupoles</subject><subject>Quantum chemistry</subject><subject>Topology</subject><subject>Water</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc9rFDEYhoMotlbvHgNePLhrfsxkZjwIZXFUWBGxRW8hk3zpZslMpklG6H9vtrsWFDwl5H2-hyQvQi8pWVPC6Ful03qvs14zTQin9BE6p3XVrTrBxOOHPW3P0LOU9gXhFeNP0RmvO961TJyj3eU8e6dVdmHCweJvi5ryMuLNDsZy7PFVmIMPN3e4D1ED7h14g_t-e_0T54A3YTIwJTD4i8oZIv7uxsXf29I7vHW3izP4hyrJc_TEKp_gxWm9QNf9h6vNp9X268fPm8vtSnHR5hUdaE1hMKy2oLXRommBNMpYRkjFBmM1aZgdBG8M1dZ2NW21VcCsaLsBOsUv0Pujd16GEYyGKUfl5RzdqOKdDMrJv5PJ7eRN-CW7qhGi5kXw-iSI4XaBlOXokgbv1QRhSZI1h6-uWkEK-uofdB-WOJXnFYrWLa9ILQpFjpSOIaUI9uEylMhDjbLUKA81ylONZeTNceQ--eP8L_4b0lyhWA</recordid><startdate>20220913</startdate><enddate>20220913</enddate><creator>Symons, Benjamin C. B.</creator><creator>Popelier, Paul L. A.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9053-1363</orcidid></search><sort><creationdate>20220913</creationdate><title>Application of Quantum Chemical Topology Force Field FFLUX to Condensed Matter Simulations: Liquid Water</title><author>Symons, Benjamin C. B. ; Popelier, Paul L. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a368t-1b151ebd25feccdc678e07adf20042bdfc072fb637d1cff9518cfae2f689be9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amoeba</topic><topic>Condensed Matter, Interfaces, and Materials</topic><topic>Gaussian process</topic><topic>Machine learning</topic><topic>Multipoles</topic><topic>Potential energy</topic><topic>Quadrupoles</topic><topic>Quantum chemistry</topic><topic>Topology</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Symons, Benjamin C. B.</creatorcontrib><creatorcontrib>Popelier, Paul L. A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Symons, Benjamin C. B.</au><au>Popelier, Paul L. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Quantum Chemical Topology Force Field FFLUX to Condensed Matter Simulations: Liquid Water</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2022-09-13</date><risdate>2022</risdate><volume>18</volume><issue>9</issue><spage>5577</spage><epage>5588</epage><pages>5577-5588</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We present here the first application of the quantum chemical topology force field FFLUX to condensed matter simulations. FFLUX offers many-body potential energy surfaces learnt exclusively from ab initio data using Gaussian process regression. FFLUX also includes high-rank, polarizable multipole moments (up to quadrupole moments in this work) that are learnt from the same ab initio calculations as the potential energy surfaces. Many-body effects (where a body is an atom) and polarization are captured by the machine learning models. The choice to use machine learning in this way allows the force field’s representation of reality to be improved (e.g., by including higher order many-body effects) with little detriment to the computational scaling of the code. In this manner, FFLUX is inherently future-proof. The “plug and play” nature of the machine learning models also ensures that FFLUX can be applied to any system of interest, not just liquid water. In this work we study liquid water across a range of temperatures and compare the predicted bulk properties to experiment as well as other state-of-the-art force fields AMOEBA(+CF), HIPPO, MB-Pol and SIBFA21. We find that FFLUX finds a place amongst these.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><pmid>35939826</pmid><doi>10.1021/acs.jctc.2c00311</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9053-1363</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2022-09, Vol.18 (9), p.5577-5588 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9476653 |
source | ACS Publications |
subjects | Amoeba Condensed Matter, Interfaces, and Materials Gaussian process Machine learning Multipoles Potential energy Quadrupoles Quantum chemistry Topology Water |
title | Application of Quantum Chemical Topology Force Field FFLUX to Condensed Matter Simulations: Liquid Water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Quantum%20Chemical%20Topology%20Force%20Field%20FFLUX%20to%20Condensed%20Matter%20Simulations:%20Liquid%20Water&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Symons,%20Benjamin%20C.%20B.&rft.date=2022-09-13&rft.volume=18&rft.issue=9&rft.spage=5577&rft.epage=5588&rft.pages=5577-5588&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.2c00311&rft_dat=%3Cproquest_pubme%3E2700314860%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715834056&rft_id=info:pmid/35939826&rfr_iscdi=true |