Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’apai eruption

On the evening of 15 January 2022, the Hunga Tonga-Hunga Ha’apai volcano 1 unleashed a violent underwater eruption, blanketing the surrounding land masses in ash and debris 2 , 3 . The eruption generated tsunamis observed around the world. An event of this type last occurred in 1883 during the erupt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2022-09, Vol.609 (7928), p.728-733
Hauptverfasser: Lynett, Patrick, McCann, Maile, Zhou, Zili, Renteria, Willington, Borrero, Jose, Greer, Dougal, Fa’anunu, Ofa, Bosserelle, Cyprien, Jaffe, Bruce, La Selle, SeanPaul, Ritchie, Andrew, Snyder, Alexander, Nasr, Brandon, Bott, Jacqueline, Graehl, Nicholas, Synolakis, Costas, Ebrahimi, Behzad, Cinar, Gizem Ezgi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 733
container_issue 7928
container_start_page 728
container_title Nature (London)
container_volume 609
creator Lynett, Patrick
McCann, Maile
Zhou, Zili
Renteria, Willington
Borrero, Jose
Greer, Dougal
Fa’anunu, Ofa
Bosserelle, Cyprien
Jaffe, Bruce
La Selle, SeanPaul
Ritchie, Andrew
Snyder, Alexander
Nasr, Brandon
Bott, Jacqueline
Graehl, Nicholas
Synolakis, Costas
Ebrahimi, Behzad
Cinar, Gizem Ezgi
description On the evening of 15 January 2022, the Hunga Tonga-Hunga Ha’apai volcano 1 unleashed a violent underwater eruption, blanketing the surrounding land masses in ash and debris 2 , 3 . The eruption generated tsunamis observed around the world. An event of this type last occurred in 1883 during the eruption of Krakatau 4 , and thus we have the first observations of a tsunami from a large emergent volcanic eruption captured with modern instrumentation. Here we show that the explosive eruption generated waves through multiple mechanisms, including: (1) air–sea coupling with the initial and powerful shock wave radiating out from the explosion in the immediate vicinity of the eruption; (2) collapse of the water cavity created by the underwater explosion; and (3) air–sea coupling with the air-pressure pulse that circled the Earth several times, leading to a global tsunami. In the near field, tsunami impacts are strongly controlled by the water-cavity source whereas the far-field tsunami, which was unusually persistent, can be largely described by the air-pressure pulse mechanism. Catastrophic damage in some harbours in the far field was averted by just tens of centimetres, implying that a modest sea level rise combined with a future, similar event would lead to a step-function increase in impacts on infrastructure. Piecing together the complexity of this event has broad implications for coastal hazards in similar geophysical settings, suggesting a currently neglected source of global tsunamis. January 2022 saw the first observations of a tsunami resulting from a large emergent volcanic eruption (Hunga Tonga) captured using modern instrumentation, with broad implications for hazard management in similar geophysical settings.
doi_str_mv 10.1038/s41586-022-05170-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9472183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700315432</sourcerecordid><originalsourceid>FETCH-LOGICAL-a474t-6706995120c3959a84ffa6c56cfaef691808c07194974cccf6c2d651fe9bf7943</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS1ERIYkP8CqJTZsDOVH-7FBQuExSCNlE9aWx1PuOJpxD3Z3pOz4DX6PL8GhIxAs2FSV5HOvynUJecHgNQNh3lTJeqMocE6hZxqoekJWTGpFpTL6KVkBcEPBCHVKntd6C_CAyWfkVPRWAge1Ipv36Q5LxW6qc_aHNGDGmmo3lTQMWHDXbe-76Qa79ZwH312PrdJlXvsf3777o08dlvk4pTGfk5Po9xUvHvsZ-fLxw_Xlmm6uPn2-fLehXmo5UaVBWdszDkHY3nojY_Qq9CpEj1FZZsAE0MxKq2UIIarAd6pnEe02aivFGXm7-B7n7QF3AfNU_N4dSzr4cu9Gn9zfLznduGG8c1ZqzoxoBq8eDcr4dcY6uUOqAfd7n3Gcq-MaQLBeCt7Ql_-gt-Nccvteo5gWEgyHRvGFCmWstWD8vQwD9xCWW8JyLSz3Kyynmkgsotrg3K79x_o_qp9XJ5bP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717340820</pqid></control><display><type>article</type><title>Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’apai eruption</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Lynett, Patrick ; McCann, Maile ; Zhou, Zili ; Renteria, Willington ; Borrero, Jose ; Greer, Dougal ; Fa’anunu, Ofa ; Bosserelle, Cyprien ; Jaffe, Bruce ; La Selle, SeanPaul ; Ritchie, Andrew ; Snyder, Alexander ; Nasr, Brandon ; Bott, Jacqueline ; Graehl, Nicholas ; Synolakis, Costas ; Ebrahimi, Behzad ; Cinar, Gizem Ezgi</creator><creatorcontrib>Lynett, Patrick ; McCann, Maile ; Zhou, Zili ; Renteria, Willington ; Borrero, Jose ; Greer, Dougal ; Fa’anunu, Ofa ; Bosserelle, Cyprien ; Jaffe, Bruce ; La Selle, SeanPaul ; Ritchie, Andrew ; Snyder, Alexander ; Nasr, Brandon ; Bott, Jacqueline ; Graehl, Nicholas ; Synolakis, Costas ; Ebrahimi, Behzad ; Cinar, Gizem Ezgi</creatorcontrib><description>On the evening of 15 January 2022, the Hunga Tonga-Hunga Ha’apai volcano 1 unleashed a violent underwater eruption, blanketing the surrounding land masses in ash and debris 2 , 3 . The eruption generated tsunamis observed around the world. An event of this type last occurred in 1883 during the eruption of Krakatau 4 , and thus we have the first observations of a tsunami from a large emergent volcanic eruption captured with modern instrumentation. Here we show that the explosive eruption generated waves through multiple mechanisms, including: (1) air–sea coupling with the initial and powerful shock wave radiating out from the explosion in the immediate vicinity of the eruption; (2) collapse of the water cavity created by the underwater explosion; and (3) air–sea coupling with the air-pressure pulse that circled the Earth several times, leading to a global tsunami. In the near field, tsunami impacts are strongly controlled by the water-cavity source whereas the far-field tsunami, which was unusually persistent, can be largely described by the air-pressure pulse mechanism. Catastrophic damage in some harbours in the far field was averted by just tens of centimetres, implying that a modest sea level rise combined with a future, similar event would lead to a step-function increase in impacts on infrastructure. Piecing together the complexity of this event has broad implications for coastal hazards in similar geophysical settings, suggesting a currently neglected source of global tsunamis. January 2022 saw the first observations of a tsunami resulting from a large emergent volcanic eruption (Hunga Tonga) captured using modern instrumentation, with broad implications for hazard management in similar geophysical settings.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05170-6</identifier><identifier>PMID: 35940206</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/189 ; 704/4111 ; Blanketing ; Coastal hazards ; Coasts ; Coupling ; Docks ; Explosions ; Far fields ; Floods ; Harbors ; Humanities and Social Sciences ; Infrastructure ; Instrumentation ; Land area ; multidisciplinary ; Science ; Science (multidisciplinary) ; Sea level ; Sea level rise ; Shock waves ; Tsunamis ; Underwater ; Underwater explosions ; Volcanic eruption effects ; Volcanic eruptions ; Volcanoes</subject><ispartof>Nature (London), 2022-09, Vol.609 (7928), p.728-733</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Nature Publishing Group Sep 22, 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a474t-6706995120c3959a84ffa6c56cfaef691808c07194974cccf6c2d651fe9bf7943</citedby><cites>FETCH-LOGICAL-a474t-6706995120c3959a84ffa6c56cfaef691808c07194974cccf6c2d651fe9bf7943</cites><orcidid>0000-0003-3894-5926 ; 0000-0001-5177-3124 ; 0000-0002-4500-7885 ; 0000-0002-2856-9405 ; 0000-0001-6215-6877 ; 0000-0001-8756-5247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-05170-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-05170-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Lynett, Patrick</creatorcontrib><creatorcontrib>McCann, Maile</creatorcontrib><creatorcontrib>Zhou, Zili</creatorcontrib><creatorcontrib>Renteria, Willington</creatorcontrib><creatorcontrib>Borrero, Jose</creatorcontrib><creatorcontrib>Greer, Dougal</creatorcontrib><creatorcontrib>Fa’anunu, Ofa</creatorcontrib><creatorcontrib>Bosserelle, Cyprien</creatorcontrib><creatorcontrib>Jaffe, Bruce</creatorcontrib><creatorcontrib>La Selle, SeanPaul</creatorcontrib><creatorcontrib>Ritchie, Andrew</creatorcontrib><creatorcontrib>Snyder, Alexander</creatorcontrib><creatorcontrib>Nasr, Brandon</creatorcontrib><creatorcontrib>Bott, Jacqueline</creatorcontrib><creatorcontrib>Graehl, Nicholas</creatorcontrib><creatorcontrib>Synolakis, Costas</creatorcontrib><creatorcontrib>Ebrahimi, Behzad</creatorcontrib><creatorcontrib>Cinar, Gizem Ezgi</creatorcontrib><title>Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’apai eruption</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>On the evening of 15 January 2022, the Hunga Tonga-Hunga Ha’apai volcano 1 unleashed a violent underwater eruption, blanketing the surrounding land masses in ash and debris 2 , 3 . The eruption generated tsunamis observed around the world. An event of this type last occurred in 1883 during the eruption of Krakatau 4 , and thus we have the first observations of a tsunami from a large emergent volcanic eruption captured with modern instrumentation. Here we show that the explosive eruption generated waves through multiple mechanisms, including: (1) air–sea coupling with the initial and powerful shock wave radiating out from the explosion in the immediate vicinity of the eruption; (2) collapse of the water cavity created by the underwater explosion; and (3) air–sea coupling with the air-pressure pulse that circled the Earth several times, leading to a global tsunami. In the near field, tsunami impacts are strongly controlled by the water-cavity source whereas the far-field tsunami, which was unusually persistent, can be largely described by the air-pressure pulse mechanism. Catastrophic damage in some harbours in the far field was averted by just tens of centimetres, implying that a modest sea level rise combined with a future, similar event would lead to a step-function increase in impacts on infrastructure. Piecing together the complexity of this event has broad implications for coastal hazards in similar geophysical settings, suggesting a currently neglected source of global tsunamis. January 2022 saw the first observations of a tsunami resulting from a large emergent volcanic eruption (Hunga Tonga) captured using modern instrumentation, with broad implications for hazard management in similar geophysical settings.</description><subject>639/766/189</subject><subject>704/4111</subject><subject>Blanketing</subject><subject>Coastal hazards</subject><subject>Coasts</subject><subject>Coupling</subject><subject>Docks</subject><subject>Explosions</subject><subject>Far fields</subject><subject>Floods</subject><subject>Harbors</subject><subject>Humanities and Social Sciences</subject><subject>Infrastructure</subject><subject>Instrumentation</subject><subject>Land area</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sea level</subject><subject>Sea level rise</subject><subject>Shock waves</subject><subject>Tsunamis</subject><subject>Underwater</subject><subject>Underwater explosions</subject><subject>Volcanic eruption effects</subject><subject>Volcanic eruptions</subject><subject>Volcanoes</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kctuFDEQRS1ERIYkP8CqJTZsDOVH-7FBQuExSCNlE9aWx1PuOJpxD3Z3pOz4DX6PL8GhIxAs2FSV5HOvynUJecHgNQNh3lTJeqMocE6hZxqoekJWTGpFpTL6KVkBcEPBCHVKntd6C_CAyWfkVPRWAge1Ipv36Q5LxW6qc_aHNGDGmmo3lTQMWHDXbe-76Qa79ZwH312PrdJlXvsf3777o08dlvk4pTGfk5Po9xUvHvsZ-fLxw_Xlmm6uPn2-fLehXmo5UaVBWdszDkHY3nojY_Qq9CpEj1FZZsAE0MxKq2UIIarAd6pnEe02aivFGXm7-B7n7QF3AfNU_N4dSzr4cu9Gn9zfLznduGG8c1ZqzoxoBq8eDcr4dcY6uUOqAfd7n3Gcq-MaQLBeCt7Ql_-gt-Nccvteo5gWEgyHRvGFCmWstWD8vQwD9xCWW8JyLSz3Kyynmkgsotrg3K79x_o_qp9XJ5bP</recordid><startdate>20220922</startdate><enddate>20220922</enddate><creator>Lynett, Patrick</creator><creator>McCann, Maile</creator><creator>Zhou, Zili</creator><creator>Renteria, Willington</creator><creator>Borrero, Jose</creator><creator>Greer, Dougal</creator><creator>Fa’anunu, Ofa</creator><creator>Bosserelle, Cyprien</creator><creator>Jaffe, Bruce</creator><creator>La Selle, SeanPaul</creator><creator>Ritchie, Andrew</creator><creator>Snyder, Alexander</creator><creator>Nasr, Brandon</creator><creator>Bott, Jacqueline</creator><creator>Graehl, Nicholas</creator><creator>Synolakis, Costas</creator><creator>Ebrahimi, Behzad</creator><creator>Cinar, Gizem Ezgi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3894-5926</orcidid><orcidid>https://orcid.org/0000-0001-5177-3124</orcidid><orcidid>https://orcid.org/0000-0002-4500-7885</orcidid><orcidid>https://orcid.org/0000-0002-2856-9405</orcidid><orcidid>https://orcid.org/0000-0001-6215-6877</orcidid><orcidid>https://orcid.org/0000-0001-8756-5247</orcidid></search><sort><creationdate>20220922</creationdate><title>Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’apai eruption</title><author>Lynett, Patrick ; McCann, Maile ; Zhou, Zili ; Renteria, Willington ; Borrero, Jose ; Greer, Dougal ; Fa’anunu, Ofa ; Bosserelle, Cyprien ; Jaffe, Bruce ; La Selle, SeanPaul ; Ritchie, Andrew ; Snyder, Alexander ; Nasr, Brandon ; Bott, Jacqueline ; Graehl, Nicholas ; Synolakis, Costas ; Ebrahimi, Behzad ; Cinar, Gizem Ezgi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a474t-6706995120c3959a84ffa6c56cfaef691808c07194974cccf6c2d651fe9bf7943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/189</topic><topic>704/4111</topic><topic>Blanketing</topic><topic>Coastal hazards</topic><topic>Coasts</topic><topic>Coupling</topic><topic>Docks</topic><topic>Explosions</topic><topic>Far fields</topic><topic>Floods</topic><topic>Harbors</topic><topic>Humanities and Social Sciences</topic><topic>Infrastructure</topic><topic>Instrumentation</topic><topic>Land area</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sea level</topic><topic>Sea level rise</topic><topic>Shock waves</topic><topic>Tsunamis</topic><topic>Underwater</topic><topic>Underwater explosions</topic><topic>Volcanic eruption effects</topic><topic>Volcanic eruptions</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lynett, Patrick</creatorcontrib><creatorcontrib>McCann, Maile</creatorcontrib><creatorcontrib>Zhou, Zili</creatorcontrib><creatorcontrib>Renteria, Willington</creatorcontrib><creatorcontrib>Borrero, Jose</creatorcontrib><creatorcontrib>Greer, Dougal</creatorcontrib><creatorcontrib>Fa’anunu, Ofa</creatorcontrib><creatorcontrib>Bosserelle, Cyprien</creatorcontrib><creatorcontrib>Jaffe, Bruce</creatorcontrib><creatorcontrib>La Selle, SeanPaul</creatorcontrib><creatorcontrib>Ritchie, Andrew</creatorcontrib><creatorcontrib>Snyder, Alexander</creatorcontrib><creatorcontrib>Nasr, Brandon</creatorcontrib><creatorcontrib>Bott, Jacqueline</creatorcontrib><creatorcontrib>Graehl, Nicholas</creatorcontrib><creatorcontrib>Synolakis, Costas</creatorcontrib><creatorcontrib>Ebrahimi, Behzad</creatorcontrib><creatorcontrib>Cinar, Gizem Ezgi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lynett, Patrick</au><au>McCann, Maile</au><au>Zhou, Zili</au><au>Renteria, Willington</au><au>Borrero, Jose</au><au>Greer, Dougal</au><au>Fa’anunu, Ofa</au><au>Bosserelle, Cyprien</au><au>Jaffe, Bruce</au><au>La Selle, SeanPaul</au><au>Ritchie, Andrew</au><au>Snyder, Alexander</au><au>Nasr, Brandon</au><au>Bott, Jacqueline</au><au>Graehl, Nicholas</au><au>Synolakis, Costas</au><au>Ebrahimi, Behzad</au><au>Cinar, Gizem Ezgi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’apai eruption</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2022-09-22</date><risdate>2022</risdate><volume>609</volume><issue>7928</issue><spage>728</spage><epage>733</epage><pages>728-733</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>On the evening of 15 January 2022, the Hunga Tonga-Hunga Ha’apai volcano 1 unleashed a violent underwater eruption, blanketing the surrounding land masses in ash and debris 2 , 3 . The eruption generated tsunamis observed around the world. An event of this type last occurred in 1883 during the eruption of Krakatau 4 , and thus we have the first observations of a tsunami from a large emergent volcanic eruption captured with modern instrumentation. Here we show that the explosive eruption generated waves through multiple mechanisms, including: (1) air–sea coupling with the initial and powerful shock wave radiating out from the explosion in the immediate vicinity of the eruption; (2) collapse of the water cavity created by the underwater explosion; and (3) air–sea coupling with the air-pressure pulse that circled the Earth several times, leading to a global tsunami. In the near field, tsunami impacts are strongly controlled by the water-cavity source whereas the far-field tsunami, which was unusually persistent, can be largely described by the air-pressure pulse mechanism. Catastrophic damage in some harbours in the far field was averted by just tens of centimetres, implying that a modest sea level rise combined with a future, similar event would lead to a step-function increase in impacts on infrastructure. Piecing together the complexity of this event has broad implications for coastal hazards in similar geophysical settings, suggesting a currently neglected source of global tsunamis. January 2022 saw the first observations of a tsunami resulting from a large emergent volcanic eruption (Hunga Tonga) captured using modern instrumentation, with broad implications for hazard management in similar geophysical settings.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35940206</pmid><doi>10.1038/s41586-022-05170-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3894-5926</orcidid><orcidid>https://orcid.org/0000-0001-5177-3124</orcidid><orcidid>https://orcid.org/0000-0002-4500-7885</orcidid><orcidid>https://orcid.org/0000-0002-2856-9405</orcidid><orcidid>https://orcid.org/0000-0001-6215-6877</orcidid><orcidid>https://orcid.org/0000-0001-8756-5247</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2022-09, Vol.609 (7928), p.728-733
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9472183
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/766/189
704/4111
Blanketing
Coastal hazards
Coasts
Coupling
Docks
Explosions
Far fields
Floods
Harbors
Humanities and Social Sciences
Infrastructure
Instrumentation
Land area
multidisciplinary
Science
Science (multidisciplinary)
Sea level
Sea level rise
Shock waves
Tsunamis
Underwater
Underwater explosions
Volcanic eruption effects
Volcanic eruptions
Volcanoes
title Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’apai eruption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20tsunamigenesis%20triggered%20by%20the%20Hunga%20Tonga-Hunga%20Ha%E2%80%99apai%20eruption&rft.jtitle=Nature%20(London)&rft.au=Lynett,%20Patrick&rft.date=2022-09-22&rft.volume=609&rft.issue=7928&rft.spage=728&rft.epage=733&rft.pages=728-733&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05170-6&rft_dat=%3Cproquest_pubme%3E2700315432%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717340820&rft_id=info:pmid/35940206&rfr_iscdi=true