Exploring the thermal limits of malaria transmission in the western Himalaya
Environmental temperature is a key driver of malaria transmission dynamics. Using detailed temperature records from four sites: low elevation (1800), mid elevation (2200 m), and high elevation (2600–3200 m) in the western Himalaya, we model how temperature regulates parasite development rate (the in...
Gespeichert in:
Veröffentlicht in: | Ecology and evolution 2022-09, Vol.12 (9), p.e9278-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | e9278 |
container_title | Ecology and evolution |
container_volume | 12 |
creator | Mozaffer, Farhina Menon, Gautam I. Ishtiaq, Farah |
description | Environmental temperature is a key driver of malaria transmission dynamics. Using detailed temperature records from four sites: low elevation (1800), mid elevation (2200 m), and high elevation (2600–3200 m) in the western Himalaya, we model how temperature regulates parasite development rate (the inverse of the extrinsic incubation period, EIP) in the wild. Using a Briére parametrization of the EIP, combined with Bayesian parameter inference, we study the thermal limits of transmission for avian (Plasmodium relictum) and human Plasmodium parasites (P. vivax and P. falciparum) as well as for two malaria‐like avian parasites, Haemoproteus and Leucocytozoon. We demonstrate that temperature conditions can substantially alter the incubation period of parasites at high elevation sites (2600–3200 m) leading to restricted parasite development or long transmission windows. The thermal limits (optimal temperature) for Plasmodium parasites were 15.62–34.92°C (30.04°C) for P. falciparum, 13.51–34.08°C (29.02°C) for P. vivax, 12.56–34.46°C (29.16°C) for P. relictum and for two malaria‐like parasites, 12.01–29.48°C (25.16°C) for Haemoproteus spp. and 11.92–29.95°C (25.51°C) for Leucocytozoon spp. We then compare estimates of EIP based on measures of mean temperature versus hourly temperatures to show that EIP days vary in cold versus warm environments. We found that human Plasmodium parasites experience a limited transmission window at 2600 m. In contrast, for avian Plasmodium transmission was not possible between September and March at 2600 m. In addition, temperature conditions suitable for both Haemoproteus and Leucocytozoon transmission were obtained from June to August and in April, at 2600 m. Finally, we use temperature projections from a suite of climate models to predict that by 2040, high elevation sites (~2600 m) will have a temperature range conducive for malaria transmission, albeit with a limited transmission window. Our study highlights the importance of accounting for fine‐scale thermal effects in the expansion of the range of the malaria parasite with global climate change.
Our study promotes new understanding of parasite transmission biology and the importance of accounting for fine‐scale thermal effects in the expansion of the range of the malaria parasite with global climate change. Using two human malaria and five avian vector‐borne parasites, we show that the contrasting thermal environments that can exist across relatively small spatial scales with |
doi_str_mv | 10.1002/ece3.9278 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9465399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718854707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4438-be78b2d46d4e0cbb2d38c77bcaeb26430c788b8fed19559ad854340542bc3db13</originalsourceid><addsrcrecordid>eNp1kd9LQjEcxUcUGeZD_0Bc6KUetN39uNt9CUIsA6GXeh7b7tTJdbNNM__7dtXEggZj37EPh3N2ALjKYS-HEN0bbXCvRIyfgAsECe0yRvnp0dwCnRhnMK0CIgLZOWjhIs8h5_QCjAZfi9oH6ybZcmqaHeayzmo7t8uY-XGWbjJYmS2DdHFuY7TeZdZt6bWJSxNcNrQNtZGX4Gws62g6-7MN3p8Gb_1hd_T6_NJ_HHU1IZh3lWFcoYoUFTFQqzRirhlTWhqFCoKhZpwrPjZVXlJayopTggmkBCmNK5XjNnjY6S5Wam4qbVxyV4tFSD7CRnhpxe8XZ6di4j9FSQqKyzIJ3O4Fgv9YpRQiJdOmrqUzfhUFYjklpECYJPTmDzrzq-BSvIZKf0gYZIm621E6-BiDGR_M5FA0NYmmJtHUlNjrY_cH8qeUBNzvgLWtzeZ_JTHoD_BW8hvSfZzO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718854707</pqid></control><display><type>article</type><title>Exploring the thermal limits of malaria transmission in the western Himalaya</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Mozaffer, Farhina ; Menon, Gautam I. ; Ishtiaq, Farah</creator><creatorcontrib>Mozaffer, Farhina ; Menon, Gautam I. ; Ishtiaq, Farah</creatorcontrib><description>Environmental temperature is a key driver of malaria transmission dynamics. Using detailed temperature records from four sites: low elevation (1800), mid elevation (2200 m), and high elevation (2600–3200 m) in the western Himalaya, we model how temperature regulates parasite development rate (the inverse of the extrinsic incubation period, EIP) in the wild. Using a Briére parametrization of the EIP, combined with Bayesian parameter inference, we study the thermal limits of transmission for avian (Plasmodium relictum) and human Plasmodium parasites (P. vivax and P. falciparum) as well as for two malaria‐like avian parasites, Haemoproteus and Leucocytozoon. We demonstrate that temperature conditions can substantially alter the incubation period of parasites at high elevation sites (2600–3200 m) leading to restricted parasite development or long transmission windows. The thermal limits (optimal temperature) for Plasmodium parasites were 15.62–34.92°C (30.04°C) for P. falciparum, 13.51–34.08°C (29.02°C) for P. vivax, 12.56–34.46°C (29.16°C) for P. relictum and for two malaria‐like parasites, 12.01–29.48°C (25.16°C) for Haemoproteus spp. and 11.92–29.95°C (25.51°C) for Leucocytozoon spp. We then compare estimates of EIP based on measures of mean temperature versus hourly temperatures to show that EIP days vary in cold versus warm environments. We found that human Plasmodium parasites experience a limited transmission window at 2600 m. In contrast, for avian Plasmodium transmission was not possible between September and March at 2600 m. In addition, temperature conditions suitable for both Haemoproteus and Leucocytozoon transmission were obtained from June to August and in April, at 2600 m. Finally, we use temperature projections from a suite of climate models to predict that by 2040, high elevation sites (~2600 m) will have a temperature range conducive for malaria transmission, albeit with a limited transmission window. Our study highlights the importance of accounting for fine‐scale thermal effects in the expansion of the range of the malaria parasite with global climate change.
Our study promotes new understanding of parasite transmission biology and the importance of accounting for fine‐scale thermal effects in the expansion of the range of the malaria parasite with global climate change. Using two human malaria and five avian vector‐borne parasites, we show that the contrasting thermal environments that can exist across relatively small spatial scales within a region and can have divergent effects on parasite development. Our modelling approach can be applied to other life‐history traits of parasites or vector.</description><identifier>ISSN: 2045-7758</identifier><identifier>EISSN: 2045-7758</identifier><identifier>DOI: 10.1002/ece3.9278</identifier><identifier>PMID: 36110885</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Bayesian analysis ; Climate change ; Climate models ; Climate prediction ; Disease Ecology ; Disease transmission ; Epidemiology ; extrinsic incubation period ; Haemoproteus ; Incubation ; Infections ; Leucocytozoon ; Malaria ; Mathematical models ; Mosquitoes ; Parameterization ; Parasites ; Pathogens ; Phenology ; Plasmodium ; Population ; Seasons ; Temperature effects ; Vector-borne diseases ; western Himalaya</subject><ispartof>Ecology and evolution, 2022-09, Vol.12 (9), p.e9278-n/a</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4438-be78b2d46d4e0cbb2d38c77bcaeb26430c788b8fed19559ad854340542bc3db13</citedby><cites>FETCH-LOGICAL-c4438-be78b2d46d4e0cbb2d38c77bcaeb26430c788b8fed19559ad854340542bc3db13</cites><orcidid>0000-0002-6762-7014 ; 0000-0001-5528-4002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9465399/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9465399/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36110885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mozaffer, Farhina</creatorcontrib><creatorcontrib>Menon, Gautam I.</creatorcontrib><creatorcontrib>Ishtiaq, Farah</creatorcontrib><title>Exploring the thermal limits of malaria transmission in the western Himalaya</title><title>Ecology and evolution</title><addtitle>Ecol Evol</addtitle><description>Environmental temperature is a key driver of malaria transmission dynamics. Using detailed temperature records from four sites: low elevation (1800), mid elevation (2200 m), and high elevation (2600–3200 m) in the western Himalaya, we model how temperature regulates parasite development rate (the inverse of the extrinsic incubation period, EIP) in the wild. Using a Briére parametrization of the EIP, combined with Bayesian parameter inference, we study the thermal limits of transmission for avian (Plasmodium relictum) and human Plasmodium parasites (P. vivax and P. falciparum) as well as for two malaria‐like avian parasites, Haemoproteus and Leucocytozoon. We demonstrate that temperature conditions can substantially alter the incubation period of parasites at high elevation sites (2600–3200 m) leading to restricted parasite development or long transmission windows. The thermal limits (optimal temperature) for Plasmodium parasites were 15.62–34.92°C (30.04°C) for P. falciparum, 13.51–34.08°C (29.02°C) for P. vivax, 12.56–34.46°C (29.16°C) for P. relictum and for two malaria‐like parasites, 12.01–29.48°C (25.16°C) for Haemoproteus spp. and 11.92–29.95°C (25.51°C) for Leucocytozoon spp. We then compare estimates of EIP based on measures of mean temperature versus hourly temperatures to show that EIP days vary in cold versus warm environments. We found that human Plasmodium parasites experience a limited transmission window at 2600 m. In contrast, for avian Plasmodium transmission was not possible between September and March at 2600 m. In addition, temperature conditions suitable for both Haemoproteus and Leucocytozoon transmission were obtained from June to August and in April, at 2600 m. Finally, we use temperature projections from a suite of climate models to predict that by 2040, high elevation sites (~2600 m) will have a temperature range conducive for malaria transmission, albeit with a limited transmission window. Our study highlights the importance of accounting for fine‐scale thermal effects in the expansion of the range of the malaria parasite with global climate change.
Our study promotes new understanding of parasite transmission biology and the importance of accounting for fine‐scale thermal effects in the expansion of the range of the malaria parasite with global climate change. Using two human malaria and five avian vector‐borne parasites, we show that the contrasting thermal environments that can exist across relatively small spatial scales within a region and can have divergent effects on parasite development. Our modelling approach can be applied to other life‐history traits of parasites or vector.</description><subject>Bayesian analysis</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climate prediction</subject><subject>Disease Ecology</subject><subject>Disease transmission</subject><subject>Epidemiology</subject><subject>extrinsic incubation period</subject><subject>Haemoproteus</subject><subject>Incubation</subject><subject>Infections</subject><subject>Leucocytozoon</subject><subject>Malaria</subject><subject>Mathematical models</subject><subject>Mosquitoes</subject><subject>Parameterization</subject><subject>Parasites</subject><subject>Pathogens</subject><subject>Phenology</subject><subject>Plasmodium</subject><subject>Population</subject><subject>Seasons</subject><subject>Temperature effects</subject><subject>Vector-borne diseases</subject><subject>western Himalaya</subject><issn>2045-7758</issn><issn>2045-7758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kd9LQjEcxUcUGeZD_0Bc6KUetN39uNt9CUIsA6GXeh7b7tTJdbNNM__7dtXEggZj37EPh3N2ALjKYS-HEN0bbXCvRIyfgAsECe0yRvnp0dwCnRhnMK0CIgLZOWjhIs8h5_QCjAZfi9oH6ybZcmqaHeayzmo7t8uY-XGWbjJYmS2DdHFuY7TeZdZt6bWJSxNcNrQNtZGX4Gws62g6-7MN3p8Gb_1hd_T6_NJ_HHU1IZh3lWFcoYoUFTFQqzRirhlTWhqFCoKhZpwrPjZVXlJayopTggmkBCmNK5XjNnjY6S5Wam4qbVxyV4tFSD7CRnhpxe8XZ6di4j9FSQqKyzIJ3O4Fgv9YpRQiJdOmrqUzfhUFYjklpECYJPTmDzrzq-BSvIZKf0gYZIm621E6-BiDGR_M5FA0NYmmJtHUlNjrY_cH8qeUBNzvgLWtzeZ_JTHoD_BW8hvSfZzO</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Mozaffer, Farhina</creator><creator>Menon, Gautam I.</creator><creator>Ishtiaq, Farah</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6762-7014</orcidid><orcidid>https://orcid.org/0000-0001-5528-4002</orcidid></search><sort><creationdate>202209</creationdate><title>Exploring the thermal limits of malaria transmission in the western Himalaya</title><author>Mozaffer, Farhina ; Menon, Gautam I. ; Ishtiaq, Farah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4438-be78b2d46d4e0cbb2d38c77bcaeb26430c788b8fed19559ad854340542bc3db13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climate prediction</topic><topic>Disease Ecology</topic><topic>Disease transmission</topic><topic>Epidemiology</topic><topic>extrinsic incubation period</topic><topic>Haemoproteus</topic><topic>Incubation</topic><topic>Infections</topic><topic>Leucocytozoon</topic><topic>Malaria</topic><topic>Mathematical models</topic><topic>Mosquitoes</topic><topic>Parameterization</topic><topic>Parasites</topic><topic>Pathogens</topic><topic>Phenology</topic><topic>Plasmodium</topic><topic>Population</topic><topic>Seasons</topic><topic>Temperature effects</topic><topic>Vector-borne diseases</topic><topic>western Himalaya</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mozaffer, Farhina</creatorcontrib><creatorcontrib>Menon, Gautam I.</creatorcontrib><creatorcontrib>Ishtiaq, Farah</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mozaffer, Farhina</au><au>Menon, Gautam I.</au><au>Ishtiaq, Farah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the thermal limits of malaria transmission in the western Himalaya</atitle><jtitle>Ecology and evolution</jtitle><addtitle>Ecol Evol</addtitle><date>2022-09</date><risdate>2022</risdate><volume>12</volume><issue>9</issue><spage>e9278</spage><epage>n/a</epage><pages>e9278-n/a</pages><issn>2045-7758</issn><eissn>2045-7758</eissn><abstract>Environmental temperature is a key driver of malaria transmission dynamics. Using detailed temperature records from four sites: low elevation (1800), mid elevation (2200 m), and high elevation (2600–3200 m) in the western Himalaya, we model how temperature regulates parasite development rate (the inverse of the extrinsic incubation period, EIP) in the wild. Using a Briére parametrization of the EIP, combined with Bayesian parameter inference, we study the thermal limits of transmission for avian (Plasmodium relictum) and human Plasmodium parasites (P. vivax and P. falciparum) as well as for two malaria‐like avian parasites, Haemoproteus and Leucocytozoon. We demonstrate that temperature conditions can substantially alter the incubation period of parasites at high elevation sites (2600–3200 m) leading to restricted parasite development or long transmission windows. The thermal limits (optimal temperature) for Plasmodium parasites were 15.62–34.92°C (30.04°C) for P. falciparum, 13.51–34.08°C (29.02°C) for P. vivax, 12.56–34.46°C (29.16°C) for P. relictum and for two malaria‐like parasites, 12.01–29.48°C (25.16°C) for Haemoproteus spp. and 11.92–29.95°C (25.51°C) for Leucocytozoon spp. We then compare estimates of EIP based on measures of mean temperature versus hourly temperatures to show that EIP days vary in cold versus warm environments. We found that human Plasmodium parasites experience a limited transmission window at 2600 m. In contrast, for avian Plasmodium transmission was not possible between September and March at 2600 m. In addition, temperature conditions suitable for both Haemoproteus and Leucocytozoon transmission were obtained from June to August and in April, at 2600 m. Finally, we use temperature projections from a suite of climate models to predict that by 2040, high elevation sites (~2600 m) will have a temperature range conducive for malaria transmission, albeit with a limited transmission window. Our study highlights the importance of accounting for fine‐scale thermal effects in the expansion of the range of the malaria parasite with global climate change.
Our study promotes new understanding of parasite transmission biology and the importance of accounting for fine‐scale thermal effects in the expansion of the range of the malaria parasite with global climate change. Using two human malaria and five avian vector‐borne parasites, we show that the contrasting thermal environments that can exist across relatively small spatial scales within a region and can have divergent effects on parasite development. Our modelling approach can be applied to other life‐history traits of parasites or vector.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>36110885</pmid><doi>10.1002/ece3.9278</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6762-7014</orcidid><orcidid>https://orcid.org/0000-0001-5528-4002</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-7758 |
ispartof | Ecology and evolution, 2022-09, Vol.12 (9), p.e9278-n/a |
issn | 2045-7758 2045-7758 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9465399 |
source | DOAJ Directory of Open Access Journals; Access via Wiley Online Library; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Bayesian analysis Climate change Climate models Climate prediction Disease Ecology Disease transmission Epidemiology extrinsic incubation period Haemoproteus Incubation Infections Leucocytozoon Malaria Mathematical models Mosquitoes Parameterization Parasites Pathogens Phenology Plasmodium Population Seasons Temperature effects Vector-borne diseases western Himalaya |
title | Exploring the thermal limits of malaria transmission in the western Himalaya |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20thermal%20limits%20of%20malaria%20transmission%20in%20the%20western%20Himalaya&rft.jtitle=Ecology%20and%20evolution&rft.au=Mozaffer,%20Farhina&rft.date=2022-09&rft.volume=12&rft.issue=9&rft.spage=e9278&rft.epage=n/a&rft.pages=e9278-n/a&rft.issn=2045-7758&rft.eissn=2045-7758&rft_id=info:doi/10.1002/ece3.9278&rft_dat=%3Cproquest_pubme%3E2718854707%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718854707&rft_id=info:pmid/36110885&rfr_iscdi=true |